Đề thi tuyển sinh vào Lớp 10 môn Toán - Năm học 2018-2019 - Sở giáo dục và đào tạo tỉnh Đồng Nai (Có đáp án)

doc 4 trang nhungbui22 4130
Bạn đang xem tài liệu "Đề thi tuyển sinh vào Lớp 10 môn Toán - Năm học 2018-2019 - Sở giáo dục và đào tạo tỉnh Đồng Nai (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_thi_tuyen_sinh_vao_lop_10_mon_toan_nam_hoc_2018_2019_so_g.doc

Nội dung text: Đề thi tuyển sinh vào Lớp 10 môn Toán - Năm học 2018-2019 - Sở giáo dục và đào tạo tỉnh Đồng Nai (Có đáp án)

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TỈNH ĐỒNG NAI NĂM HỌC 2018-2019 ĐỀ CHÍNH THỨC Môn toán Thời gian làm bài: 120 phút (Đề gồm 1 trang, có 5 câu) Câu 1. ( 2,25 điểm) 1) Giải phương trình 2x2 5x 7 0 x 3y 5 2) Giải hệ phương trình 5x 2y 8 3) Giải phương trình x4 9x2 0 Câu 2. (2,25 điểm) 1 Cho hai hàm số y x2 và y x 1 có đồ thị lần lượt là (P) và (d) 4 1) Vẽ hai đồ thị (P) và (d) trên cùng mặt phẳng tọa độ. 2) Tìm tọa độ giao điểm của hai đồ thị (P) và (d). Câu 3. (1,75 điểm) a a 1 a a 1 1) Rút gọn biểu thức S ( với a > 0 và a 1) a a a 2) Một xe ô tô và xe máy khởi hành cùng một lúc từ địa điểm A đi đến địa điểm B cách nhau 60 km với vận tốc không đổi, biết vận tốc xe ô tô lớn hơn vận tốc xe máy là 20km/h và xe ô tô đến B sớm hơn xe máy là 30 phút. Tính vận tốc của mỗi xe. Câu 4. (0,75 điểm) Tìm các giá trị của tham số thực m để phương trình x2 2m 3 x m2 2m 0 có hai nghiệm phân biệt x , x sao cho biểu thức x x 7 1 2 1 2 . Câu 5. ( 3 điểm) Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc đường tròn (O), với C khác A và B, biết CA < CB. Lấy điểm M thuộc đoạn OB, với M khác O và B. Đường thẳng đi qua điểm M vuông góc với AB cắt hai đường thẳng AC và BC lần lượt tại hai điểm D và H. 1) Chứng minh bốn điểm A, C, H, M cùng thuộc một đường tròn và xác định tâm của đường tròn này. 2) Chứng minh : MA.MB = MD.MH 3) Gọi E là giao điểm của đường thẳng BD với đường tròn (O), E khác B. Chứng minh ba điểm A, H, E thẳng hàng. 4) Trên tia đối của tia BA lấy điểm N sao cho MN = AB, Gọi P và Q tương ứng là hình chiếu vuông góc của điểm M trên BD và N trên AD. Chứng minh bốn điểm D, Q, H, P cùng thuộc một đường tròn. HẾT Câu 1. ( 2,25 điểm) 7 1) Phương trình 2x2 5x 7 0 có a b c 2 5 7 0 x 1; x 1 2 2 x 3y 5 2x 6y 10 17x 34 x 2 x 2 2) 5x 2y 8 x 3y 5 x 3y 5 2 3y 5 y 1
  2. 3) x4 9x2 0 x2 x2 9 0 x 0 (vì x2 9 0 x ) Câu 2. (2,25 điểm) 1 Cho hai hàm số y x2 và y x 1 có đồ thị lần lượt là (P) và (d) 4 1) Vẽ hai đồ thị (P) và (d) trên cùng mặt phẳng tọa độ. 1 * P : y x2 4 x 3 2 1 0 1 2 3 9 1 1 9 y 1 0 1 4 4 4 4 2 * d : y x 1 -5 5 x 0 y 1 A 0; 1 -2 x 1 y 0 B 1;0 -4 2) Tìm tọa độ giao điểm của hai đồ thị (P) và (d). Phương trình hoành độ giao điểm của (P) và (d) là: 1 2 x2 x 1 x2 4x 4 x2 4x 4 0 x 2 0 x 2 4 1 1 Thay x 2 vào y x2 y  22 1 4 Ta được 4 . Vậy tọa độ giao điểm của hai đồ thị (P) và (d) là (2;1) Câu 3. (1,75 điểm) 3 3 a a 1 a a 1 a 1 a a 1 a 1 a a 1 a a 1 S 1) a a a a a a a a 1 a a a 1 a a 1 2 a 2 a a a 2) Gọi vận tốc của xe máy là x km / h . ĐK x 0 Vận tốc của xe ô tô là x 20 km / h . 60 Thời gian xe máy đi từ A đến B là: h x 60 Thời gian xe ô tô đi từ A đến B là: h x 20 1 Vì xe ô tô đến B sớm hơn xe máy là 30 phút h nên ta có PT 2 60 60 1 120 x 20 120x x x 20 x x 20 2 120x 2400 120x x2 20x x2 20x 2400 0 x2 20x 2400 0 ' 100 2400 2500 0 ' 2500 50 Phương trình có hai nghiệm x1 10 50 40 (t/m đk)
  3. x2 10 50 60 (không t/m đk) Vậy vận tốc của xe máy là 40km / h . Vận tốc của xe ô tô là 40 20 60 km / h . Câu 4. (0,75 điểm) x2 2m 3 x m2 2m 0 có 2m 3 2 4 m2 2m 4m2 12m 9 4m2 8m 4m 9 9 Phương trình có hai nghiệm phân biệt khi 0 4m 9 0 4m 9 m 4 Áp dụng định lý Vi et ta có: S x1 x2 2m 3 2 P x1 .x2 m 2m 2 2 2 2 x1 x2 7 x1 x2 49 x1 x2 2x1.x2 49 x1 x2 4x1.x2 49 x1 x2 2m 3 Thay 2 x1 .x2 m 2m Ta được 2m 3 2 4 m2 2m 49 4m 9 49 m 10 (t/m đk) Câu 5. ( 3 điểm) Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc đường tròn (O), với C khác A và B, biết CA < CB. Lấy điểm M thuộc đoạn OB, với M khác O và B. Đường thẳng đi qua điểm M vuông góc với AB cắt hai đường thẳng AC và BC lần lượt tại hai điểm D và H. 1) Chứng minh bốn điểm A, C, H, M cùng thuộc một đường tròn và xác định tâm của đường tròn này. 2) Chứng minh : MA.MB = MD.MH 3) Gọi E là giao điểm của đường thẳng BD với đường tròn (O), E khác B. Chứng minh ba điểm A, H, E thẳng hàng. 4) Trên tia đối của tia BA lấy điểm N sao cho MN = AB, Gọi P và Q tương ứng là hình chiếu vuông góc của điểm M trên BD và N trên AD. Chứng minh bốn điểm D, Q, H, P cùng thuộc một đường tròn. D Q C E H P F A N O M B 1) Tự giải 2) Tứ giác ACHM nội tiếp D· AM M· HB (cùng bù C· HM ) MA MD MAD ∽ MHB g g MA.MB MD.MH MH MB
  4. 3) Dễ thấy AE và BC là hai đường cao của DAB H là trực tâm của DAB AH  DB 1 . ·AEB 900 (góc nội tiếp chắn nữa đường tròn) AE  DB 2 (1) và (2) suy ra ba điểm A,H, E thẳng hàng. 4) Gọi F là giao điểm của MP và NQ. Dễ thấy MP / / AE H· AB F· MN (đồng vị). BC / / NQ H· BA F· NM (đồng vị).Lại có AB MN gt do đó AHB MFN g.c.g HB FN mà HB / / FN suy ra tứ giác HFNB là hình bình hành HF / / BN lại có DH  BN DH  HF D· HF 900 . Do đó D· QF D· HF D· PF 900 5 điểm D,Q,H,P,F cùng thuộc một đường tròn hay bốn điểm D, Q, H, P cùng thuộc một đường tròn.