Đề thi thử THPT quốc gia lần 1 môn Toán lớp 12 - Mã đề thi 101

pdf 6 trang thienle22 9820
Bạn đang xem tài liệu "Đề thi thử THPT quốc gia lần 1 môn Toán lớp 12 - Mã đề thi 101", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfde_thi_thu_thpt_quoc_gia_lan_1_mon_toan_lop_12_ma_de_thi_101.pdf

Nội dung text: Đề thi thử THPT quốc gia lần 1 môn Toán lớp 12 - Mã đề thi 101

  1. SỞ GD & ĐT BẮC NINH ĐỀ THI THỬ THPT QUỐC GIA LẦN 1 NĂM HỌC 2019 – 2020 TRƯỜNGU THPT LÝ THÁI TỔ Môn: Toán – Lớp 12 ĐỀ THI CHÍNH THỨC Thời gian làm bài: 90 phút (không kể thời gian phát đề) (Đề thi gồm có 6 trang) Họ và tên thí sinh: Mã đề thi 101 Số báo danh: Câu 1: Cho hàm số y ax42 bx c có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng? A. ac 0, 0 B. ac 0, 0 C. ac 0, 0 D. ac 0, 0 Câu 2: Cho hình hộp chữ nhật ABCD.''''. A B C D Các đường chéo của các hình chữ nhật ABCD, ABB ' A ', ADD'' A lần lượt là 5, 10, 13. Thể tích khối hộp chữ nhật đã cho là: A. 6 B. 8 C. 5 D. 36 Câu 3: Cắt một khối trụ cho trước bởi một mặt phẳng vuông góc với trục thì được hai khối trụ mới có tổng diện tích toàn phần nhiều hơn diện tích toàn phần của khối trụ ban đầu 18 dm2 .Biết chiều cao của khối trụ ban đầu là 5, dm tính tổng diện tích toàn phần S của hai khối trụ mới. A. S 48 dm2 B. S 51 dm2 C. S 144 dm2 D. S 66 dm2 25x Câu 4: Số các đường tiệm cận của đồ thị hàm số y là: xx2 2 15 A. 2 B. 3 C. 1 D. 4 2xx2 31 khi x 1 Câu 5: Cho hàm số fx . Tìm giá trị của tham số a để hàm số fx liên x 1 2ax 1 khi 1 tục tại x 1. A. a 4 B. a 1 C. a 0 D. a 3 Câu 6: Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật với AB 2, a AD a . Hình chiếu của o S lên mặt phẳng đáy là trung điểm H của cạnh AB; góc tạo bởi cạnh SC và mặt phẳng đáy là 45 . Thể tích khối chóp S. ABCD là: a 3 3 a 3 2a 3 22a 3 A. B. C. D. 2 3 3 3 Câu 7: Cho hình nón có độ dài đường sinh bằng 5 và bán kính đường tròn đáy bằng 4. Tính thể tích khối nón tạo bởi hình nón trên. 80 16 A. B. 48 C. D. 16 3 3 Câu 8: Một hộp có 3 bi xanh, 4 bi đỏ và5 bi vàng. Chọn ngẫu nhiên 3 bi sao cho có đủ ba màu. Số cách chọn là: A. 60 B. 220 C. 360 D. 120 Câu 9: Bất phương trình 22xx 18.2 32 0 có tập nghiệm là: A. ;1  4; B. ;1  16; C. ; 2  16; D. ;2  4; Trang 1/6 - Mã đề thi 101
  2. x Câu 10: Tập tất cả các giá trị của tham số a để hàm số ya 2 nghịch biến trên là: A. 3; B. ;3 C. 2; 3 D. ;1 Câu 11: Phương trình cos2xx 3 cos 2 0 có họ nghiệm là: A. x kk2; B. x kk; C. x kk ; D. xk 2; k Câu 12: Khẳng định nào dưới đây sai? A. Hàm số yx cos là hàm số lẻ B. Hàm số yx cot2 là hàm số lẻ C. Hàm số yx tan là hàm số lẻ D. Hàm số yx sin là hàm số lẻ a 2 ab, a 1 logb 3. log Câu 13: Cho là hai số dương với thỏa mãn a Khi đó, giá trị b bằng: b 5 1 2 A. B. 1 C. D. 3 3 3 Câu 14: Cho hình lăng trụ đều ABC.''' A B C có cạnh đáy bằng a và cạnh bên bằng 2.a Thể tích của khối lăng trụ đã cho là: a 3 3 a 3 3 a 3 3 a 3 3 A. B. C. D. 6 3 2 4 xx2 3 Câu 15: Giá trị lớn nhất của hàm số y trên đoạn 4; 2 bằng: x 1 28 A. B. 9 C. 10 D. 1 3 a a Câu 16: Biết giới hạn lim nn22 3 n 2 với ab, và là phân số tối giản. Khi đó, b b giá trị 2ab bằng: A. 4 B. 3 C. 5 D. 8 Câu 17: Cho x là số thực lớn hơn 8. Mệnh đề nào dưới đây đúng? 34 3 A. xx 88 B. xx25 43 32 xx 11 C. D. 66 xx 2 Câu 18: Tập nghiệm của phương trình log51 xx 2 log 18 x 0 là: 5 A. 6; 3 B. 3; 6 C. 6; 3 D. 3; 6 Câu 19: Cho hình trụ có thiết diện qua trục là một hình vuông, diện tích mỗi mặt đáy bằng 9. cm 2 Tính diện tích xung quanh hình trụ đó. 2 2 2 2 A. Sxq 18 cm B. Sxq 36 cm C. Sxq 72 cm D. Sxq 9 cm Câu 20: Cho hàm số y fx có bảng biến thiên như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây? A. ;0 B. 2; C. 3; 2 D. 6;1 Trang 2/6 - Mã đề thi 101
  3. 51x Câu 21: Hệ số góc của tiếp tuyến với đồ thị hàm số y tại giao điểm với trục tung là: x 1 A. 6 B. 6 C. 4 D. 4 10 2 x 4 Px x . Câu 22: Tìm hệ số của trong khai triển của biểu thức 2 x A. 480 B. 210 C. 840 D. 180 x 2 Câu 23: Đường thẳng yx 41 cắt đồ thị hàm số y tại bao nhiêu điểm? x 2 A. 0 B. 1 C. 2 D. 3 Câu 24: Cho hình lăng trụ đứng ABC.''' A B C có cạnh AA', a đáy là tam giác ABC vuông tại A có BC 2 a, AB a 3. Tính khoảng cách từ đường thẳng AA' đến mặt phẳng BCC' B '. a 3 a 3 a 3 a 3 A. B. C. D. 2 3 4 6 Câu 25: Cho a là số thực dương khác 1. Mệnh đề nào dưới đây sai? loga 2 1 log3 a 2 A. a B. log3 a 3 C. 3 a D. loga 2 2 a a Câu 26: Cho hình chóp S. ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng ABCD . Thể tích của khối chóp S. ABCD là: a 3 3 a 3 3 a 3 A. B. C. a 3 D. 2 6 3 Câu 27: Điểm cực đại của đồ thị hàm số yx 23 61 x là: A. 1; 3 B. xC Đ 1 C. xC Đ 1 D. 1; 5 Câu 28: Cho hình chóp D. ABC có đáy ABC là tam giác vuông tại B, DA vuông góc với mặt phẳng đáy. Biết AB 3, a BC 4 a và AD 5. a Bán kính mặt cầu ngoại tiếp hình chóp D. ABC bằng: 53a 52a 53a 52a A. B. C. D. 3 3 2 2 Câu 29: Hàm số nào dưới đây có giá trị nhỏ nhất trên tập xác định? A. yx 3 32 x B. y 2 xx32 31 C. yx 4221 x D. yx 42 4 x Câu 30: Cho hình bát diện đều ABCDEF như hình vẽ. Tổng số cạnh và mặt của hình bát diện bằng bao nhiêu? A. 20 B. 12 C. 18 D. 16. Câu 31: Cho phương trình mx 36 2 log3 x 0 1 .Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn 100;100 để phương trình 1 có hai nghiệm phân biệt? A. 96 B. 196 C. 97 D. 197 Trang 3/6 - Mã đề thi 101
  4. Câu 32: Litva sẽ tham gia vào cộng đồng chung châu Âu sử dụng đồng Euro là đồng tiền chung vào ngày 01tháng 01 năm 2015.Để kỷ niệm thời khắc lịch sử này, chính quyền đất nước này quyết định dùng 122550 đồng tiền xu Litas Lithuania cũ của đất nước để xếp một 0T mô0T38 hình kim tự tháp 0T38 (như hình vẽ bên). Biết rằng tầng dưới cùng có 4901đồng và cứ lên thêm một tầng thì số đồng xu giảm đi 100 đồng. Hỏi mô hình Kim tự tháp này có tất cả bao nhiêu tầng? A. 54 B. 50 C. 49 D. 55 Câu 33: Cho hàm số y fx có bảng xét dấu đạo hàm như sau: Hàm số yf 32 x nghịch biến trên khoảng nào dưới đây? 3 7 5 1 A. ;0 B. 2; C. −−;1 D. ;2 2 2 2 2 Câu 34: Cho mặt cầu S có bán kính Ra không đổi. Hình nón N thay đổi có đường cao lớn hơn R, có đỉnh và đường tròn đáy thuộc mặt cầu S . Thể tích khối nón N là V1 và thể tích phần còn lại của V 19 khối cầu là V . Khi 2 thì bán kính của hình nón N bằng: 2 V 8 1 a 22a a 2 2a A. B. C. D. 3 3 3 3 Câu 35: Cho hàm số y fx có đạo hàm trên và có đồ thị như hình vẽ bên. Xét hàm số gx fx 3 2. x m Giá trị của tham số m để giá trị lớn nhất của hàm số gx trên đoạn 0;1 bằng 9 là: A. m 10 B. m 6 C. m 12 D. m 8 Câu 36: Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc khoảng 20;20 để với mọi cặp hai số 22 xy; có tổng lớn hơn 1đều đồng thời thỏa mãn log33 2x 4 y 1 2 m 1 log 1 2 ym 9 0 và e3xy e 221 x y 13 xy? A. 15 B. 17 C. 14 D. 16 Câu 37: Ông Toán gửi vào một ngân hàng 100 triệu đồng theo thể thức lãi suất kép với lãi suất 0, 8% /tháng. Biết lãi suất không thay đổi trong suốt quá trình gửi. Hỏi sau đúng một năm kể từ lúc bắt đầu gửi tiền vào ngân hàng ông Toán thu được tất cả bao nhiêu tiền (gồm cả gốc và lãi)? A. 109,161triệu đồng B. 110,034 triệu đồng C. 110,914 triệu đồng D. 109,6 triệu đồng Trang 4/6 - Mã đề thi 101
  5. Câu 38: Bạn Bình muốn làm một chiếc thùng hình trụ không đáy từ nguyên liệu là mảnh tôn hình tam giác đều ABC có cạnh bằng 60 cm . Bạn muốn cắt mảnh tôn hình chữ nhật MNPQ từ mảnh tôn nguyên liệu (với MN, thuộc cạnh BC; PQ, tương ứng thuộc cạnh AC và AB ) để tạo thành hình trụ có chiều cao bằng MQ. Thể tích lớn nhất của chiếc thùng mà bạn Bình có thể làm được là: 8000 3 6825 6825 4000 3 A. cm 3 B. cm 3 C. cm 3 D. cm 3 4 2 x 1 Câu 39: Gọi S là tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y có x2 22 mx m đúng hai đường tiệm cận. Tổng tất cả các phần tử của tập S bằng: A. 4 B. 2 C. 5 D. 1 Câu 40: Số các nghiệm nguyên nhỏ hơn 2019 của bất phương trình log2 16x 5 logx 2 0 là: 4 A. 2015 B. 2018 C. 2017 D. 2016 Câu 41: Cho hàm số y 2 m 1sin xm 2cos x 4 m 31. Có tất cả bao nhiêu giá trị nguyên dương nhỏ hơn 2019 của tham số m để hàm số 1 xác định với mọi x . A. 2017 B. 2 C. 2018 D. 0 fx 8 3 fx 71 Câu 42: Cho fx là đa thức thỏa mãn lim 6. Tính L lim . x 3 x 3 x 3 xx2 23 3 3 1 1 A. L B. L C. L D. L 4 2 2 4 Câu 43: Cho hai hàm số y fx , y ffx có đồ thị lần lượt là C và C '. Đường thẳng x 2 cắt CC ,' lần lượt tại M và N. Biết phương trình tiếp tuyến với C tại điểm M là yx 2 2. Khi đó, phương trình tiếp tuyến của C ' tại điểm N là: A. yx 26 B. yx 46 C. yx 22 D. yx 48 o Câu 44: Cho hình chóp đều S. ABC có góc giữa mặt bên và mặt đáy bằng 60 ; H là hình chiếu vuông a góc của S trên mặt phẳng ABC . Khoảng cách từ H đến SA bằng . Gọi là góc giữa hai mặt 7 phẳng SAB và SAC . Khi đó, tan bằng: 2 7 2 6 3 A. B. C. D. 3 3 3 3 Câu 45: Cho hình chóp S. ABCD có đáy ABCD là hình hình bình hành và thể tích khối chóp S. ABCD bằng 18. Biết điểm MN, lần lượt là trung điểm của SA,. SB Thể tích khối đa diện ABCDMN bằng: 27 27 45 45 A. B. C. D. 4 2 2 4 Câu 46: Trong không gian cho tam giác ABC đều cạnh bằng 8, M là một điểm tùy ý thỏa mãn MA22 MB MC 2 100 . Khi đó, quỹ tích điểm M là một mặt cầu có bán kính bằng bao nhiêu? A. 6 B. 33 C. 23 D. 2 Trang 5/6 - Mã đề thi 101
  6. Câu 47: Cho hàm số y fx có đạo hàm trên và có đồ thị hàm số fx' như hình vẽ bên. Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số g x f x mx có đúng hai điểm cực tiểu? A. 6 B. 7 C. 9 D. 8 Câu 48: Cho hình hộp chữ nhậtABCD.''''. A B C D Khoảng cách giữa hai đường thẳng AB và BC' bằng 25a 25a , khoảng cách giữa hai đường thẳng BC và AB ' bằng , khoảng cách giữa hai đường thẳng 5 5 a 3 AC và BD ' bằng . Tính thể tính khối hộp chữ nhật đã cho. 3 A. 4a 3 B. 2a 3 C. 6a 3 D. 8a 3 Câu 49: Gọi S là tập hợp tất cả các giá trị của tham số m để đường thẳng yxm 1 cắt đồ thị hàm 32 số yx m 31 x x tại ba điểm phân biệt A 1; yA , BC , sao cho BC 2 3. Tổng bình phương tất cả các phần tử của tập hợp S là: A. 64 B. 40 C. 52 D. 32 Câu 50: Cho tập A 1, 2, 3, 4, 5, 6 . Trong các số tự nhiên gồm 6chữ số được lập từ các chữ số thuộc tập A chọn ngẫu nhiên một số. Tính xác suất để trong số đó luôn xuất hiện 3 chữ số 2 , các chữ số còn lại đôi một khác nhau. 25 35 45 55 A. B. C. D. 972 972 972 972 HẾT Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Trang 6/6 - Mã đề thi 101