Đề thi tuyển sinh vào Lớp 10 môn Toán - Năm học 2019-2020 - Sở giáo dục và đào tạo tỉnh Trà Vinh (Có đáp án)

docx 4 trang nhungbui22 11/08/2022 2720
Bạn đang xem tài liệu "Đề thi tuyển sinh vào Lớp 10 môn Toán - Năm học 2019-2020 - Sở giáo dục và đào tạo tỉnh Trà Vinh (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docxde_thi_tuyen_sinh_vao_lop_10_mon_toan_nam_hoc_2019_2020_so_g.docx

Nội dung text: Đề thi tuyển sinh vào Lớp 10 môn Toán - Năm học 2019-2020 - Sở giáo dục và đào tạo tỉnh Trà Vinh (Có đáp án)

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT TRÀ VINH NĂM HỌC 2019 – 2020 MÔN THI: TOÁN ĐỀ CHÍNH THỨC Thời gian: 120 phút (không kể thời gian phát đề) I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 ĐIỂM) Câu 1: (3,0 điểm) 1. Rút gọn biểu thức: A 20 45 3 80 3x 4y 5 2. Giải hệ phương trình: 6x 7y 8 3. Giải phương trình: x2 x 12 0 Câu 2: (2,0 điểm) 2 Cho hai hàm số y x 3 và y 2x có đồ thị lần lượt là d và P 1. Vẽ d và P trên cùng hệ trục tọa độ Oxy 2. Tìm tọa độ giao điểm của d và P bằng phép toán Câu 3: (2,0 điểm) Cho phương trình x2 x 3m 11 0 1 (với m là tham số) 1. Với giá trị nào của m thì phương trình 1 có nghiệm kép 2. Tìm m để phương trình 1 có hai nghiệm phân biệt x1, x2 sao cho 2017x1 2018x2 2019 II. PHẦN TỰ CHỌN (3,0 ĐIỂM) Thí sinh chọn một trong hai đề sau đây: Đề 1: Câu 4: (3,0 điểm) Cho tam giác ABC có ba góc đều nhọn nội tiếp đường tròn tâm O , hai đường cao BD và CE cắt đường tròn tâm O theo thứ tự tại P và Q P B, Q C 1. Chứng minh tứ giác BCDE nội tiếp đường tròn 2. Gọi H là giao điểm của BD và CE . Chứng minh HB.HP HC.HQ Đề 2: Câu 5: (3,0 điểm) Cho đường tròn tâm O . Từ điểm M nằm ngoài đường tròn tâm O vẽ các tiếp tuyến MA , MB với O ( A , B là hai tiếp điểm). Vẽ cát tuyến MCD không đi qua tâm O , C nằm giữa M và D . 1. Chứng minh tứ giác MAOB nội tiếp đường tròn 2. Chứng minh MA2 MC.MD .HẾT
  2. HƯỚNG DẪN GIẢI I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 ĐIỂM) Câu 1: (3,0 điểm) 1. A 20 45 3 80 2 5 3 5 12 5 11 5 3x 4y 5 6x 8y 10 y 2 2. 6x 7y 8 6x 7y 8 x 1 Vậy hệ phương trình có nghiệm là ( 1;2) 2 x 3 0 x 3 3. x x 12 0 (x 3)(x 4) 0 x 4 0 x 4 Vậy tập nghiệm của phương trình là: S 3; 4 Câu 2: (2,0 điểm) 2 Cho hai hàm số y x 3 và y 2x có đồ thị lần lượt là d và P 1. Vẽ d và P trên cùng hệ trục tọa độ Oxy . Đồ thị của hàm số y x 3 là đường thẳng đi qua hai điểm 0; 3 và 3;0 Bảng giá trị của hàm số y 2x2 là: x 2 1 0 1 2 y 2x2 8 2 0 2 8 Đồ thị hàm số y 2x2 là Parabol đi qua các điểm 2; 8 ; 1; 2 ; 0;0 ; 2; 8 ; 1; 2 nhận Oy làm trục đối xứng. y y = x - 3 -2 -1 O 1 2 3 x -2 -3 -8 y = -2x2
  3. 2. Xét phương trình hoành độ giao điểm của P và d là: x 3 2x2 2x2 x 3 0 (*) 3 Vì phương trình (*) có hệ số a b c 0 nên có 2 nghiệm là x 1; x 1 2 2 Với x 1 y 2, ta có điểm A 1; 2 3 9 3 9 Với x y ta có điểm B ; 2 2 2 2 3 9 Vậy d giao P tại hai điểm là A 1; 2 và B ; 2 2 Câu 3: (2,0 điểm) Cho phương trình x2 x 3m 11 0 1 (với m là tham số) a 0 1 0 15 1. Để phương trình 1 có nghiệm kép thì m 0 1 4(3m 11) 45 12m 0 4 15 Vậy với m thỏa mãn yêu cầu đề bài. 4 a 0 1 0 15 2. Để phương trình 1 có hai nghiệm phân biệt x1, x2 thì m 0 45 12m 0 4 x1 x2 1 Theo hệ thức Vi-et ta có: x1.x2 3m 11 Mà theo đề bài ta có 2017x1 2018x2 2019 nên ta có hệ phương trình: x1 x2 1 x1 1 2017x1 2018x2 2019 x2 2 Thay giá trị x1 1, x2 2 vào x1.x2 3m 11 ta được m 3 (thỏa mãn). Vậy m 3 thỏa mãn điều kiện đề bài. II. PHẦN TỰ CHỌN (3 ĐIỂM) Thí sinh chọn một trong hai đề sau đây: Đề 1: Câu 4: (3,0 điểm) A P Q D E H O B C 1. Chứng minh tứ giác BCDE nội tiếp đường tròn
  4. Xét ABC có: BD  AC , CE  AB (gt) B· DC B· EC 90 Xét tứ giác BCDE có: B· DC B· EC 90 (cmt) nên hai đỉnh D , E kề nhau cùng nhìn cạnh BC dưới các góc vuông. Do đó: BCDE là tứ giác nội tiếp. 2. Gọi H là giao điểm của BD và CE . Chứng minh HB.HP HC.HQ · · Xét đường tròn O có: QPB QCB (hai góc cùng chắn cung BQ ). HP HQ Lại có: HPQ ∽ HCB (g.g) nên HP.HB HC.HQ HC HB Đề 2: Câu 5: (3,0 điểm) A M C D O B 1. Chứng minh tứ giác MAOB nội tiếp đường tròn. Vì MA , MB là hai tiếp tuyến của O nên MA  AO , MB  OB (gt) M· AO M· BO 90 Xét tứ giác MAOB có: M· AO M· BO 90 90 180 Mà hai góc ở vị trí đối nhau nên tứ giác MAOB là tứ giác nội tiếp. 2. Chứng minh MA2 MC.MD · · Xét O có: MAC ADC (góc tạo bởi tiếp tuyến và dây cung ; góc nội tiếp cùng chắn cung AC ) MA MC 2 Lại có: MAC ∽ MDA (g.g) nên MA MD.MC MD MA