Đề thi tuyển sinh vào Lớp 10 môn Toán - Năm học 2017-2018 - Sở giáo dục và đào tạo tỉnh Tây Ninh (Có đáp án)
Bạn đang xem tài liệu "Đề thi tuyển sinh vào Lớp 10 môn Toán - Năm học 2017-2018 - Sở giáo dục và đào tạo tỉnh Tây Ninh (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_tuyen_sinh_vao_lop_10_mon_toan_nam_hoc_2017_2018_so_g.doc
Nội dung text: Đề thi tuyển sinh vào Lớp 10 môn Toán - Năm học 2017-2018 - Sở giáo dục và đào tạo tỉnh Tây Ninh (Có đáp án)
- SỞ GIÁO DỤC VÀ ĐÀO TẠO TÂY NINH. KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2017 - 2018 Ngày thi: 02 tháng 06 năm 2017 Môn thi: TOÁN (Không chuyên) Thời gian: 120 phút (Không kể thời gian giao đề) ĐÊ CHÍNH THỨC (Đề thi có 01 trang, thí sinh không phài chép đề vào giấy thi) Câu 1: (1,0 điểm) Rút gọn biểu thức T = 36 9 49 Câu 2: (1,0 điểm) Giải phương trình x2 – 5x – 14 = 0 Câu 3: (1,0 điểm) Tìm m để đường thẳng (d) : y 2m 1 x 3 song song với đường thẳng (d ') : y 5x 6 3 Câu 4: (1,0 điểm) Vẽ đồ thị của hàm số y x2 2 ax y 1 Câu 5: (1,0 điểm) Tìm a và b biết hệ phương trình có một nghiệm là (2;–3) ax by 5 Câu 6: Cho tam giác ABC vuông tại A có đường cao AH (H thuộc cạnh BC) biết AB = a , BC = 2a. Tính theo a độ dài AC và AH. 2 Câu 7: (1,0 điểm) Tìm m để phương trình x x m 2 0 có hai nghiệm phân biệt x1, 3 3 2 2 x2 thỏa x1 x2 x1 x2 17 . Câu 8: (1,0 điểm) Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng 6m và độ dài đường chéo bằng 65 lần chiều rộng . Tính diện tích của mảnh đất hình 4 chữ nhật đã cho. Câu 9: (1,0 điểm) Cho tam giác ABC có B· AC tù. Trên BC lấy hai điểm D và E, trên AB lấy điểm F, trên AC lấy điểm K sao cho BD = BA, CE = CA, BE = BF, CK = CD. Chứng minh bốn điểm D, E, F và K cùng nằm trên một đường tròn. Câu 10: (1,0 điểm) Cho tam giác ABC (AB < AC), nội tiếp đường tròn đường kính BC, có đường cao AH (H thuộc cạnh BC), đường phân giác của góc A trong tam AH 15 giác ABC cắt đường tròn đó tại K (K khác A) , Biết = . Tính ·ACB HK 5 Hết Giám thị không giải thích gì thêm Họ và tên thí sinh: . Số báo danh: Chữ ký của giám thị 1: Chữ ký của giám thị 2:
- GỢI Ý ĐÁP ÁN Câu 1 Tính T = 36 9 49 1 điểm Ta có: T = 62 32 72 T = 6 + 3 7 T = 2 Vậy T = 2 Câu 2 Giải phương trình x2 – 5x – 14 = 0 1 điểm Ta có: a = 1, b = -5, c = -14 Biệt thức: = b2 – 4ac = 25 + 56 = 81> 0 = 9 Vậy phương trình có hai nghiệm phân biệt x1 = 7 , x2 = 7 Tìm m để đường thẳng (d) : y 2m 1 x 3 song song với đường Câu 3 1 điểm thẳng (d ') : y 5x 6 Điều kiện: 2m – 1 0 Vì (d) // (d’) nên hệ số a = a’ Suy ra: 2m – 1 = 5 2m = 6 m = 3 3 Câu 4 Vẽ đồ thị của hàm số y x2 1 điểm 2 Bảng sau cho một số giá trị x và y x -2 -1 0 1 2 3 3 3 y x2 6 0 6 2 2 2 Vẽ
- ax y 1 Tìm a và b biết hệ phương trình có một nghiệm là Câu 5 ax by 5 1 điểm (2; –3) Cho tam giác ABC vuông tại A có đường cao AH (H thuộc cạnh Câu 6 1 điểm BC) biết AB = a , BC = 2a. Tính theo a độ dài AC và AH. Tìm m để phương trình x2 x m 2 0 có hai nghiệm phân biệt Câu 7 3 3 2 2 1 điểm x1, x2 thỏa x1 x2 x1 x2 17 . Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng 6m và độ dài đường chéo bằng 65 lần chiều rộng . Tính diện tích Câu 8 4 1 điểm của mảnh đất hình chữ nhật đã cho. Cho tam giác ABC có B· AC tù. Trên BC lấy hai điểm D và E, trên AB lấy điểm F, trên AC lấy điểm K sao cho BD = BA, Câu 9 1 điểm CE = CA, BE = BF, CK = CD. Chứng minh bốn điểm D, E, F và K cùng nằm trên một đường tròn.
- Cho tam giác ABC (AB < AC), nội tiếp đường tròn đường kính BC, có đường cao AH (H thuộc cạnh BC), đường phân giác của Câu 10 góc A trong tam giác ABC cắt đường tròn đó tại K (K khác A) , 1 điểm AH 15 Biết = . Tính ·ACB HK 5 Cách 1 Cách 2 Hết rồi ! .