Đề thi học sinh giỏi cấp tỉnh môn Toán Lớp 12 - Bảng A - Năm học 2020-2021 - Sở giáo dục và đào tạo Quảng Ninh (Có đáp án)
Bạn đang xem tài liệu "Đề thi học sinh giỏi cấp tỉnh môn Toán Lớp 12 - Bảng A - Năm học 2020-2021 - Sở giáo dục và đào tạo Quảng Ninh (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_hoc_sinh_gioi_cap_tinh_mon_toan_lop_12_bang_a_nam_hoc.docx
Nội dung text: Đề thi học sinh giỏi cấp tỉnh môn Toán Lớp 12 - Bảng A - Năm học 2020-2021 - Sở giáo dục và đào tạo Quảng Ninh (Có đáp án)
- ĐỀ THI CHỌN HSG BẢNG A TỈNH QUẢNG NINH NĂM HỌC 2020 -2021 Thời gian 180 phút, không tính thời gian phát đề ĐỀ BÀI Câu 1. x2 a) Cho hàm số y ( m là tham số). Tìm tất cả các giá trị thực của m để hàm số đồng biến trên x m khoảng ; 2 . x3 2 b) Cho hàm số y x2 4x (1). Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị x2 3x hàm số (1). Câu 2. Lớp 12B lập Kế hoạch tiết kiệm 5 triệu đồng tiền tiêu vặt trong 5 tháng để ủng hộ đồng bào bị thiên tai như sau: Vào các ngày mùng 1 của các tháng 1,2,3,4,5 của năm 2021 mỗi học sinh trong lớp tiết kiện số tiền giống nhau là A đồng và nộp lại cho lớp trưởng để lớp trưởng gửi vào ngân hang theo hình thức lãi kép (lãi nhập vào gốc để tính lãi ở tháng tiếp theo) với lãi suất r r 0 trên một tháng (lãi suất không đổi trong suốt thời gian gửi). Hãy xây dựng công thức tính A theo r biết rằng lớp có 40 học sinh và ngày rút tiền ủng hộ là ngày 01/ 6 / 2021 (chỉ rút duy nhất một lần). R Câu 3. Cho tam giác ABC thõa mãn sin A 2sin B 3sin C và AC 2BC cosC. Tính tỉ số với R r và r lần lượt là bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác IAB với I là trung điểm AC. Câu 4. a) Cho lăng trụ tam giác ABC.A B C , biết hình chóp A .ABC là hình chóp tam giác đều cạnh đáy bằng a, A BC AB C . Tính thể tích khối lăng trụ ABC.A B C theo a. b) Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB 2a, BC a, tam giác SAB vuông đỉnh A, tam giác SBC vuông đỉnh C,d A; SBC a 2 . Tính khoảng cách giữa SB và AC theo a. 3 3 x 2 8y 2y x 2 0 Câu 5. Cho hệ phương trình: ( m là tham số thực). Tìm giá trị thực lớn mlog x 1 log y 1 0 2 2 nhất của m để hệ phương trình có nghiệm x; y với x 0; y 0 3 2 Câu 6. Tìm số ngiệm thực của bất phương trình (x + x - 2) 2x log2 x + 1- x ³ 0. .HẾT .
- HƯỚNG DẪN GIẢI x2 Câu 1. a) Cho hàm số y ( m là tham số). Tìm tất cả các giá trị thực của m để hàm số đồng x m biến trên khoảng ; 2 . x3 2 b) Cho hàm số y x2 4x (1). Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị x2 3x hàm số (1). Lời giải a) Tập xác định: D ¡ \ m . x2 2mx Ta có y . Hàm số đồng biến trên khoảng ; 2 x m 2 y 0,x ; 2 (dấu bằng xảy ra tại hữu hạn điểm) 2 x 2mx 0,x ; 2 1 m ; 2 2 x 1 2mx x2 ,x ; 2 m ,x ; 2 . 2 x Xét hàm số g x trên khoảng ; 2 có bảng biến thiên như sau 2 x Như vậy m ,x ; 2 m 1. 2 2 m 2 m 2 . Từ đó ta có các giá trị m thỏa yêu cầu bài toán là m 1. x3 2 b) Hàm số y x2 4x có tập xác định D ; 4 0; . x2 3x 3 2 x 2 Ta xét lim y lim x 4x 2 . x x x 3x 3 3 2 x 2 2 x 2 L lim y lim x 4x 2 lim x 4x x 2 x x x x 3x x x 3x 2 4x 4 Xét L1 lim x 4x x lim lim 2 . x x x2 4x x x 4 1 1 x 2 3 2 3 x 2 2 3x x2 L2 lim 2 x lim 2 lim 3. x x x 3 x 3x x 3x 1 x Như vậy L L1 L2 5 . Suy ra đồ thị hàm số có một đường tiệm cận ngang y 5 .
- 3 2 x 2 Ta xét lim y lim x 4x 2 . Suy ra đồ thị hàm số có một đường tiệm cận đứng x 0. x 0 x 0 x 3x Câu 7. Lớp 12B lập Kế hoạch tiết kiệm 5 triệu đồng tiền tiêu vặt trong 5 tháng để ủng hộ đồng bào bị thiên tai như sau: Vào các ngày mùng 1 của các tháng 1,2,3,4,5 của năm 2021 mỗi học sinh trong lớp tiết kiện số tiền giống nhau là A đồng và nộp lại cho lớp trưởng để lớp trưởng gửi vào ngân hang theo hình thức lãi kép (lãi nhập vào gốc để tính lãi ở tháng tiếp theo) với lãi suất r r 0 trên một tháng (lãi suất không đổi trong suốt thời gian gửi). Hãy xây dựng công thức tính A theo r biết rằng lớp có 40 học sinh và ngày rút tiền ủng hộ là ngày 01/ 6 / 2021 (chỉ rút duy nhất một lần). Lời giải Số tiền tiết kiệm sau 1 tháng của lớp 12B là: 40A 1 r (đồng). 2 Số tiền tiết kiệm sau 2 tháng của lớp 12B là: 40A 1 r 40A 1 r 40A 1 r 40A 1 r (đồng). Số tiền tiết kiệm sau 5 tháng của lớp 12B là: 40A 1 r 5 40A 1 r 4 40A 1 r 3 40A 1 r 2 40A 1 r 1 r 5 1 40A (đồng) r 1 r 5 1 Vậy công thức cần tìm là: 40A . r R Câu 8. Cho tam giác ABC thõa mãn sin A 2sin B 3sin C và AC 2BC cosC. Tính tỉ số với R r và r lần lượt là bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác IAB với I là trung điểm AC. Lời giải Áp đụng định lý cosin với tam giác ABC ta có: a2 b2 c2 AC 2BC cosC b 2a. a c 2ab Nên tam giác ABC cân đỉnh B A C(1) Do A C nên sin A 2sin B 3sin C sin B sin C B C (Vì B và C là 2 góc trong tam giác) và do (1) nên tam giác ABC đều 1 a I là trung điểm AC nên BI AC tam giác IAB vuông đỉnh I R AB 2 2 a 3 a(3 3) Tam giác ABC đều nên BI ; nửa chu vi IAB là p ; 2 4 1 a2 3 s BI.AI ; IAB 2 8 s a R Do r r 1 3 p 2(1 3) r Câu 9. a) Cho lăng trụ tam giác ABC.A B C , biết hình chóp A .ABC là hình chóp tam giác đều cạnh đáy bằng a, A BC AB C . Tính thể tích khối lăng trụ ABC.A B C theo a.
- b) Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB 2a, BC a, tam giác SAB vuông đỉnh A, tam giác SBC vuông đỉnh C,d A; SBC a 2 . Tính khoảng cách giữa SB và AC theo a. Lời giải a) a2 3 +) Tam giác ABC đều cạnh a S . ABC 4 +) Gọi G là trọng tâm của tam giác ABC , vì A .ABC là hình chóp đều nên A G ABC . Gọi I, J lần lượt là tâm của các mặt bên ABB A và ACC A A BC AB C IJ ; gọi AM IJ K (với M là trung điểm của BC ) K là trung điểm của IJ AK IJ, A K IJ (vì AIJ và A IJ lần lượt là các tam giác cân tại A, A ). a 3 Lại có A BC AB C AK A M A AM cân tại A AA AM . 2 2 2 a 3 a 3 a 15 2 2 A G A A AG . 2 3 6 a3 5 Vậy V S .A G . ABC.A B C ABC 8 b) Ta có AB SB, AB AD AB SD. Chứng minh tương tự, ta có BC SD SD ABCD . CD.SD Ta có AD // SBC d A, SBC d D, SBC d D, SC CD2 SD2 2a.SD a 2 2 4a2 SD2 4SD2 SD 2a . 4a2 SD2 Gọi M là trung điểm của SD MO // SB (với O AC BD ) SB // MAC d SB, AC d AB, MAC d B, MAC d D, MAC h .
- 1 1 1 1 1 1 1 9 Ta có MDAC là tứ diện vuông tại D h2 DA2 DC 2 DM 2 a2 4a2 a2 4a2 2a h . 3 2a Vậy d SB, AC . 3 3 3 x 2 8y 2y x 2 0 Câu 10. Cho hệ phương trình: ( m là tham số thực). Tìm giá trị thực lớn mlog x 1 log y 1 0 2 2 nhất của m để hệ phương trình có nghiệm x; y với x 0; y 0 Lời giải Xét: x 2 3 8y3 2y x 2 0 x 2 3 x 2 2y 3 2y 1 Đặt f x x3 x,x ¡ f x 3x2 1 0,x ¡ Pt 1 viết lại: f x 2 f 2y x 2 2y x 2 2y x 0 2 2y 0 * Với 0 y 1 y 0 y 0 3 3 x 2 8y 2y x 2 0 x 2 2y Hệ phương trình: mlog x 1 log y 1 0 2mlog2 3 2y log2 y 1 2 2 x 2 2y y log2 2m 2 log2 3 2y y log2 * Đặt g y 2 ,y 0;1 log2 3 2y y 2log 2log 3 2y 2 1 2 2 y . 3 2y .log 3 2y 2y log 2 y.ln 2 3 2y .ln 2 2 2 2 g y 2 2 log2 3 2y ln 2.log2 3 2y .y. 3 2y 2 y 2 y 3 2 y y 3 2 y y g y 0 log2 3 2y log2 0 log2 3 2y . 0 2 2 2 y 2 y 3 2 y y 3 2 y 2 3 2y . 1 3 2y 2 y 1 1 y g 2 2 2 y 2 0;1 Bảng biến thiên của g y
- Phương trình có nghiệm 2m 2 m 1 Vậy giá trị thực m lớn nhất là m 1 3 2 Câu 11. Tìm số ngiệm thực của bất phương trình (x + x - 2) 2x log2 x + 1- x ³ 0. Lời giải TXĐ: D = (0;1] 3 2 (x + x - 2) 2x log2 x + 1- x ³ 0. (1) 2 Nếu 2x log2 x + 1- x > 0 (*). Bất phương trình (1) tương đương với x 3 + x - 2 ³ 0 Û (x - 1)(x2 + x + 2) ³ 0 Û x ³ 1 Kết hợp điều kiện, suy ra x = 1. Thay vào (*) không thỏa mãn. Vậy số nghiệm của bất phương trình (1) bằng số nghiệm của phương trình 2 2x log2 x + 1- x = 0 (2) Đặt t = log2 x , x Î (0;1] nên t Î (- ¥ ;0]. Phương trình (2) trở thành 2.2t .t = - 1- 4t (3) Phương trình (3) suy ra ïì t £ 0 t t ï 2.2 .t = - 1- 4 Û íï ï 4.4t .t 2 = 1- 4t îï ì ì ï t £ 0 ï t £ 0 Û íï Û íï ï 4t (4t 2 + 1) = 1 ï 4t 2 + 1- 4- t = 0 (4) îï îï Vậy số nghiệm của (3) bằng số nghiệm t £ 0 của (4). Xét hàm số f (t) = 4t 2 + 1- 4- t trên (- ¥ ;0]. Có f ¢(t) = 8t + 4- t ln 4 f ¢¢(t) = 8 - 4- t ln2 4 Vì f ¢¢(t) có một nghiệm thuộc (- ¥ ;0] nên suy ra f (t) có tối đa ba nghiệm thuộc (- ¥ ;0].(Cái này có thể áp dụng Định lý Roll hoặc lý luận trực tiếp từ bảng biến thiên)
- 1 Có f (0) = 0, f (- 1) = 0 và f (- 3) = - 27 0. Vậy (4) có ba nghiệm là 0,- và 2 2 một nghiệm thuộc (- 3;- 1) . 1 æ1 1ö x = 1,x = ç ÷ Suy ra bất phương trình đã cho có ba nghiệm và một nghiệm thuộc ç ; ÷. 2 èç8 2÷ø