Bài tập trắc nghiệm Hình học Lớp 11 - Chương 8 - Chủ đề 6: Góc và khoảng cách (Có đáp án)

doc 31 trang nhungbui22 2910
Bạn đang xem 20 trang mẫu của tài liệu "Bài tập trắc nghiệm Hình học Lớp 11 - Chương 8 - Chủ đề 6: Góc và khoảng cách (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docbai_tap_trac_nghiem_hinh_hoc_lop_11_chuong_8_chu_de_6_goc_va.doc

Nội dung text: Bài tập trắc nghiệm Hình học Lớp 11 - Chương 8 - Chủ đề 6: Góc và khoảng cách (Có đáp án)

  1. CHỦ ĐỀ 6. GÓC VÀ KHOẢNG CÁCH A. KIẾN THỨC CƠ BẢN I. GÓC: 1. Góc giữa hai mặt phẳng. Góc giữa hai mặt phẳng (P): Ax By Cz D 0 , (Q): A’x B’y C’z D’ 0 được ký hiệu: 0o ((P),(Q)) 90o , xác định bởi hệ thức AA' BB' CC' cos((P),(Q)) . A2 B2 C 2 . A' 2 B' 2 C' 2 Đặc biệt: (P)  (Q) AA' BB' CC' 0. 2. Góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng. a) Góc giữa hai đường thẳng (d) và (d’) có vectơ chỉ phương u (a;b;c) và u' (a';b';c') là  aa ' bb' cc ' cos (0o 90o ). a2 b2 c2 . a '2 b'2 c '2 Đặc biệt: (d)  (d') aa' bb' cc' 0. b) Góc giữa đường thẳng d có vectơ chỉ phương u (a;b;c) và mp ( ) có vectơ pháp tuyến n (A;B;C). Aa Bb Cc sin cos(n, u) (0o 90o ). A2 B2 C2 . a 2 b2 c2 Đặc biệt: (d) //( ) hoặc (d)  ( ) Aa Bb Cc 0. II. KHOẢNG CÁCH 1. Khoảng cách từ một điểm đến mặt phẳng, khoảng cách giữa hai mặt phẳng song song. a) Khoảng cách từ M (x0 ;y0; z0 ) đến mặt phẳng ( ) có phương trình Ax by Cz D 0 là: Ax By Cz D d(M,(P)) 0 0 0 . A2 B2 C 2 b) Khoảng cách giữa hai mp song song là khoảng cách từ một điểm thuộc mặt phẳng này đến mặt phẳng kia. 2. Khoảng cách từ một điểm đến một đường thẳng - khoảng cách giữa hai đường thẳng. a) Khoảng cách từ điểm M đến một đường thẳng dqua điểm Mocó vectơ chỉ phương u :  M M; u 0 d(M, d) . u b) Khoảng cách giữa hai đường thẳng song song là khoảng cách từ một điểm thuộc đường thẳng này đến đường thẳng kia. c) Khoảng cách giữa hai đường thẳng chéo nhau: dđi qua điểm M và có vectơ chỉ phương u và d’ đi qua điểm M’ và có vectơ chỉ phương u' là:   u; u' .M M 0 d(d, d ')  . u; u' Trang 1/31
  2. d) Khoảng cách từ giữa đường thẳng và mặt phẳng song song là khoảng cách từ một điểm thuộc đường thẳng đến mặt phẳng hoặc khoảng cách từ một điểm thuộc mặt phẳng đến đường thẳng. B. KỸ NĂNG CƠ BẢN - Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến mặt phẳng; biết cách khoảng cách giữa hai mặt phẳng song song. - Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến một đường thẳng; biết cách tính khoảng cách giữa hai đường thẳng song song; khoảng cách giữa hai đường thẳng chéo nhau; khoảng cách từ đường thẳng đến mặt phẳng song song. - Nhớ và vận dụng được công thức góc giữa hai đường thẳng; góc giữa đường thẳng và mặt phẳng; góc giữa hai mặt phẳng. - Áp dụngđược góc và khoảng cách vào các bài toán khác. C. BÀI TẬP TRẮC NGHIỆM Câu 1. Trong không gian Oxyz, khoảng cách từ điểm A 1; 2; 2 đến mặt phẳng ( ) : x 2y 2z 4 0 bằng: 13 1 A. 3. B. 1. C. . D. . 3 3 Câu 2. Tính khoảng cách giữa hai mặt phẳng song song ( ) : 2x y 2z 4 0 và ( ) : 2x y 2z 2 0 . 10 4 A. 2.B. 6.C. . D. . 3 3 Câu 3. Khoảng cách từ điểm M 3; 2; 1 đến mặt phẳng (P): Ax Cz D 0 , A.C.D 0 . Chọn khẳng định đúngtrong các khẳng định sau: 3A C D A 2B 3C D A. d(M ,(P)) B. d(M ,(P)) . A2 C 2 A2 B2 C 2 3A C 3A C D C. d(M ,(P)) . D. d(M ,(P)) . A2 C 2 32 12 x 1 t Câu 4. Tính khoảng cách giữa mặt phẳng ( ) : 2x y 2z 4 0 và đường thẳng d: y 2 4t . z t 1 4 A. . B. . C. 0.D. 2. 3 3 Câu 5. Khoảng cách từ điểm A 2; 4; 3 đến mặt phẳng ( ) : 2x y 2z 1 0 và ( ) : x 0 lần lượt là d(A,( )) , d(A,( )) . Chọn khẳng định đúng trong các khẳng định sau: A. d A,( ) 3 . d A,( ) . B. d A,( ) d A,( ) . C. d A,( ) = d A,( ) . D. 2. d A,( ) = d A,( ) . Câu 6. Tìm tọa độ điểm Mtrên trục Oy sao cho khoảng cách từ điểm M đến mặt phẳng (P): 2x y 3z 4 0 nhỏ nhất? 4 A. M 0;2;0 . B. M 0;4;0 . C. M 0; 4;0 . D. M 0; ;0 . 3 Câu 7. Khoảng cách từ điểm M 4; 5;6 đến mặt phẳng (Oxy), (Oyz) lần lượt bằng: A. 6 và 4.B. 6 và 5.C. 5 và 4.D. 4 và 6. Trang 2/31
  3. Câu 8. Tính khoảng cách từ điểm A x0; y0; z0 đến mặt phẳng (P) : Ax By Cz D 0 , với A.B.C.D 0 . Chọn khẳng định đúngtrong các khẳng định sau: Ax0 By0 Cz0 A. d A,(P) Ax0 By0 Cz0. B. d A,(P) . A2 B2 C 2 Ax By Cz D Ax By Cz D C. d A,(P) 0 0 0 . D. d A,(P) 0 0 0 . A2 C 2 A2 B2 C 2 Câu 9. Tính khoảng cách từ điểm B x0; y0;z0 đến mặt phẳng (P): y + 1 = 0. Chọn khẳng định đúngtrong các khẳng định sau: y0 1 A. y0. B. y . C. . D. y 1 . 0 2 0 Câu 10. Khoảng cách từ điểm C 2; 0; 0 đến mặt phẳng (Oxy) bằng: A. 0.B. 2.C. 1.D. 2. Câu 11. Khoảng cách từ điểm M 1;2;0 đến mặt phẳng (Oxy), (Oyz), (Oxz). Chọn khẳng định saitrong các khẳng định sau: A. d M ,(Oxz) 2. B. d M ,(Oyz) 1. C. d M ,(Oxy) 1. D. d M ,(Oxz) d M ,(Oyz) . Câu 12. Khoảng cách từ điểm A x0; y0; z0 đến mặt phẳng (P): Ax By Cz D 0 , với D 0 bằng 0 khi và chỉ khi: A. Ax0 By0 Cz0 D. B. A (P). C Ax0 By0 Cz0 D. D. Ax0 By0 Cz0.= 0. Câu 13. Khoảng cách từ điểm O đến mặt phẳng (Q) bằng 1. Chọn khẳng định đúngtrong các khẳng định sau: A. (Q): x y z – 3 0. B. (Q): 2x y 2z – 3 0. C. (Q): 2x y – 2z 6 0. D. (Q): x y z – 3 0. Hướng dẫn giải Dùng công thức khoảng cách từ 1 điểm đến mặt phẳng, sau đó tính khoảng cách lần lượt trong mỗi trường hợp và chọn đáp án đúng. x 1 t Câu 14. Khoảng cách từ điểm H (1;0;3) đến đường thẳng d1 : y 2t , t R và mặt phẳng (P): z 3 t z 3 0 lần lượt là d(H,d1) và d(H,(P)) . Chọn khẳng định đúngtrong các khẳng định sau: A d H,d1 d H,(P) . B. d H,(P) d H,d1 . C. d H,d1 6.d H,(P) . D. d H,(P) 1. x 2 t Câu 15. Tính khoảng cách từ điểm E (1;1;3) đến đường thẳng d : y 4 3t , t R bằng: z 2 5t 1 4 5 A . B. . C. . D. 0 35 35 35 Câu 16. Cho vectơ u 2; 2; 0 ; v 2; 2; 2 . Góc giữa vectơ u và vectơ v bằng: Trang 3/31
  4. A.135 .B. 45 .C. 60 .D. 150 . x 2 t x 1 t Câu 17. Cho hai đường thẳng d1 : y 1 t và d2 : y 2 . Góc giữa hai đường thẳng d 1 và d2 z 3 z 2 t là: A30.B. 120 .C. 150 .D. 60 . x y z Câu 18. Cho đường thẳng : và mặt phẳng (P): 5x 11y 2z 4 0 . Góc giữa đường 1 2 1 thẳng và mặt phẳng (P) là: A. 60 .B. 30.C. 30.D. 60 . Câu 19. Cho mặt phẳng ( ) : 2x y 2z 1 0; ( ) : x 2y 2z 3 0 . Cosin góc giữa mặt phẳng ( ) và mặt phẳng ( ) bằng: 4 4 4 4 A. B. . C. . D. . 9 9 3 3 3 3 Câu 20. Cho mặt phẳng (P) : 3x 4y 5z 2 0 và đường thẳng d là giao tuyến của hai mặt phẳng ( ) : x 2y 1 0; ( ) : x 2z 3 0 . Gọi là góc giữa đường thẳng d và mặt phẳng (P). Khi đó: A. 60 .B. 45 .C. 30.D. 90 . Câu 21. Cho mặt phẳng ( ) : 3x 2y 2z 5 0 . Điểm A(1; – 2; 2). Có bao nhiêu mặt phẳng đi qua A và tạo với mặt phẳng ( ) một góc 45. A. Vô số.B. 1.C. 2.D. 4. Câu 22. Hai mặt phẳng nào dưới đây tạo với nhau một góc 60 A. (P) : 2x 11y 5z 3 0 và (Q) : x 2y z 2 0 . B.(P) : 2x 11y 5z 3 0 và (Q) : x 2y z 5 0 . C. (P) : 2x 11y 5z 21 0 và (Q) : 2x y z 2 0 . D. (P) : 2x 5y 11z 6 0 và (Q) : x 2y z 5 0 . Câu 23. Cho vectơ u(1; 1; 2), v(1; 0; m) . Tìm m để góc giữa hai vectơ u, v có số đo bằng 45 . Một học sinh giải như sau: 1 2m Bước 1: Tính cos u, v 6. m2 1 1 2m 1 Bước 2: Góc giữa u, v có số đo bằng 45 nên 6. m2 1 2 1 2m 3(m2 1) (*) Bước 3: Phương trình (*) (1 2m)2 3(m2 1) m 2 6 m2 4m 2 0 m 2 6. Bài giải đúng hay sai? Nếu sai thì sai ở bước nào? A. Sai ở bước 3.B. Sai ở bước 2.C. Sai ở bước 1.D. Đúng. Câu 24. Cho hai điểm A(1; 1; 1); B(2; 2; 4) . Có bao nhiêu mặt phẳng chứa A, Bvà tạo với mặt phẳng ( ) : x 2y z 7 0 một góc 60 . A. 1.B. 4.C. 2.D. Vô số. Trang 4/31
  5. Câu 25. Gọi là góc giữa hai đường thẳng AB, CD. Khẳng định nào sau đây là khẳng định đúng:     AB.CD AB.CD A. cos   . B. cos   . AB . CD AB . CD     AB CD AB.CD . C. cos   . D. cos   . AB,CD AB . CD Câu 26. Cho hình lập phương ABCD.A'B'C 'D' có cạnh bằng a. Gọi M, N, P lần lượt là trung điểm các cạnh BB', CD, A'D'. Góc giữa hai đường thẳng MP và C’N là: A. 30o.B. 120 o.C. 60 o.D. 90 o. Câu 27. Cho hình chóp A.BCD có các cạnh AB, AC, AD đôi một vuông góc. ABC cân, cạnh bên bằng a, AD 2a . Cosin góc giữa hai đường thẳng BD và DC là: 4 2 4 1 A. . B. . C. . D. . 5 5 5 5 Câu 28. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2, AC = 5 . SAC vuông cân tại A. K là trung điểm của cạnh SD. Hãy xác định cosin góc giữa đường thẳng CK và AB? 4 2 4 2 A. . B. . C. . D. . 17 11 22 22 Câu 29. Trong không gian với hệ tọa độ Oxyz, cho bốn điểm điểm A( 3; 4; 5); B(2; 7; 7); C(3; 5; 8); D( 2; 6; 1) . Cặp đường thẳng nào tạo với nhau một góc 60 ? A. DB và AC.B. AC và CD.C. AB và CB.D.CB và CA. Câu 30. Trong không gian với hệ tọa độ Oxyz, mặt phẳng nào dưới đây đi qua A(2; 1; – 1) tạo với trục Oz một góc 30 ? A. 2(x 2) (y 1) (z 2) 3 0. B. (x 2) 2(y 1) (z 1) 2 0. C. 2(x 2) (y 1) (z 2) 0. D. 2(x 2) (y 1) (z 1) 2 0. Câu 31. Cho mặt phẳng (P) :3x 4y 5z 8 0 . Đường thẳng d là giao tuyến của hai mặt phẳng ( ) : x 2y 1 0; ( ) : x 2z 3 0 . Góc giữa d và (P) là: A. 120. B. 60. C.150. D. 30.   Câu 32. Gọi là góc giữa hai vectơ AB, CD . Khẳng định nào sau đây là đúng:     AB.CD AB.CD A. cos   .B. cos   . AB . CD AB . CD     AB.CD AB.DC C. sin   . D. cos   AB . CD AB . DC Câu 33. Cho ba mặt phẳng (P) : 2x y 2z 3 0; (Q) : x y z 2 1; (R) : x 2y 2z 2 0 . Gọi 1; 2; 3 lần lượt là góc giữa hai mặt phẳng (P) và (Q), (Q) và (R), (R) và (P). Khẳng định nào sau đây là khẳng định đúng. A. 1 3 2 . B. 2 3 1. C. 3 2 1. D. 1 2 3 . Câu 34. Trong không gian với hệ tọa độOxyz, cho mặt phẳng : x 2y 2z m 0 vàđiểm A 1;1;1 . Khi đó m nhận giá trị nào sau đây để khoảng cách từ điểm A đến mặt phẳng bằng 1? A. 2.B. 8.C. 2 hoặc 8 .D. 3. Trang 5/31
  6. Câu 35. Trong không gian với hệ tọa độOxyz, mặt phẳng cắt các trục Ox, Oy, Oz lần lượt tại 3 điểm A 2;0;0 , B 0;3;0 ,C 0;0;4 . Khi đó khoảng cách từ gốc tọa độ O đến mặt phẳng ABC là 61 12 61 A. . B.4.C. . D.3. 12 61 y 0 Câu 36. Trong không gian với hệ tọa độ Oxyz cho điểm M 1;0;0 và N 0;0; 1 , 2x y 2z 2 0 mặt phẳng P qua điểm M , N và tạo với mặt phẳng Q : x y 4 0 một góc bằng 45O . Phương trình mặt phẳng P là y 0 y 0 A. .B. . 2x y 2z 2 0 2x y 2z 2 0 2x y 2z 2 0 2x 2z 2 0 C. .D. . 2x y 2z 2 0 2x 2z 2 0 Câu 37. Trong không gian Oxyz , cho điểm A 2; 0; 1 , đường thẳng d qua điểm A và tạo với trục Oy góc 45O . Phương trình đường thẳng d là x 2 y z 1 x 2 y z 1 2 5 1 2 5 1 A. .B. x 2 y z 1 x 2 y z 1 2 5 1 2 5 1 x 2 y z 1 x 2 y z 1 2 5 1 2 5 1 C. D. x 2 y z 1 x 2 y z 1 2 5 1 2 5 1 Câu 38. Trong không gian Oxyz cho mặt phẳng P : x y z 3 0 và mặt phẳng Q : x y z 1 0. Khi đó mặt phẳng R vuông góc với mặt phẳng P và Q sao cho khoảng cách từ O đến mặt phẳng R bằng 2 , có phương trình là A. 2x 2z 2 2 0 .B. x z 2 2 0 . x z 2 2 0 C. x z 2 2 0 .D. . x z 2 2 0 Câu 39. Tập hợp các điểm M x; y; z trong không gian Oxyz cách đều hai mặt phẳng P :x y 2z 3 0 và Q :x y 2z 5 0 thoả mãn: A. x y 2z 1 0 .B. x y 2z 4 0 . C. x y 2z 2 0 .D. x y 2z 4 0 . Câu 40. Tập hợp các điểm M x; y; z trong không gian Oxyz cách đều hai mặt phẳng P :x 2y 2z 7 0 và mặt phẳng Q :2x y 2z 1 0 thoả mãn: x 3y 4z 8 0 A. x 3y 4z 8 0. B. . 3x y 6 0 C. 3x y 6 0. D.3x 3y 4z 8 0. Trang 6/31
  7. Câu 41. Trong không gian Oxyz cho điểm M thuộc trục Oxcách đều hai mặt phẳng P : x y 2z 3 0 và Oyz .Khitọa độ điểm M là 3 3 3 3 A. ;0;0 và ;0;0 . B. ;0;0 và ;0;0 . 1 6 6 1 1 6 1 6 6 1 6 1 1 6 1 6 C. ;0;0 và ;0;0 . D. ;0;0 và ;0;0 . 3 3 3 3 x 5 y 1 z 2 Câu 42. Trong không gianOxyz cho điểm A 3; 2;4 và đường thẳng d : . Điểm 2 3 2 M thuộc đường thẳng d sao cho M cách A một khoảng bằng 17 . Tọa độ điểm M là A. 5;1;2 và 6; 9; 2 .B. 5;1;2 và 1; 8; 4 . C. 5; 1;2 và 1; 5;6 . D. 5;1;2 và 1; 5;6 . Câu 43. Trong không gian Oxyz cho tứ diện ABCD có các đỉnh A 1;2;1 , B 2;1;3 ,C 2; 1;1 và D 0;3;1 . Phương trình mặt phẳng P đi qua 2 điểm A, B sao cho khoảng cách từ C đến P bằng khoảng cách từ D đến P là 4x 2y 7z 1 0 A. . B. 2x 3z 5 0. 2x 3z 5 0 4x 2y 7z 15 0 C. 4x 2y 7z 15 0. D. . 2x 3z 5 0 Câu 44. Trong không gian với hệ trục toạ độ Oxyz, gọi P là mặt phẳng chứa đường thẳng x 1 y 2 z d : và tạo với trục Oy góc có số đo lớn nhất. Điểm nào sau đây thuộc 1 1 2 mp P ? A. E 3;0;4 . B. M 3;0;2 . C. N 1; 2; 1 . D. F 1;2;1 . Câu 45. Trong không gian với hệ trục toạ độ Oxyz, cho điểm M 0; 1; 2 , N 1; 1; 3 . Gọi P là mặt phẳng đi qua M , N và tạo với mặt phẳng Q :2x y 2z 2 0 góc có số đo nhỏ nhất. Điểm A 1;2;3 cách mp P một khoảng là 5 3 7 11 4 3 A. 3. B. . C. . D. . 3 11 3 Câu 46. Trong không gian với hệ trục toạ độ Oxyz, cho P :x 2 y 2z 1 0 và 2 đường thẳng x 1 y z 9 x 1 y 3 z 1 : ; : . 1 1 1 6 2 2 1 2 Gọi M là điểm thuộc đường thẳng 1 , M có toạ độ là các số nguyên, M cách đều 2 và P . Khoảng cách từ điểm M đến mp Oxy là A.3. B. 2 2. C.3 2. D. 2. Câu 47. Trong không gian với hệ trục toạ độ Oxyz, cho 2 điểm A 1;5;0 ; B 3;3;6 và đường thẳng x 1 y 1 z d : . Gọi C là điểm trên đường thẳng d sao cho diện tích tam giác ABC nhỏ 2 1 2 nhất. Khoảng cách giữa 2 điểm A và C là A. 29. B. 29. C. 33. D.7. Trang 7/31
  8. Câu 48. Trong không gian với hệ trục toạ độ Oxyz, cho điểm A 10;2;1 và đường thẳng x 1 y z 1 d : . Gọi P là mặt phẳng đi qua điểm A , song song với đường thẳng d sao 2 1 3 cho khoảng cách giữa d và P lớn nhất. Khoảng cách từ điểm M 1;2;3 đến mp P là 97 3 76 790 2 13 3 29 A. . B. . C. . D. . 15 790 13 29 Câu 49. Trong không gian với hệ trục toạ độ Oxyz, cho điểm A 2;5;3 và đường thẳng x 1 y z 2 d : . Gọi P là mặt phẳng chứa đường thẳng d sao cho khoảng cách từ A 2 1 2 đến P lớn nhất. Tính khoảng cách từ điểm M 1;2; 1 đến mặt phẳng P . 11 18 11 4 A. . B.3 2. C. . D. . 18 18 3 Câu 50. Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng P :x y z 2 0 và hai đường x 1 t x 3 t thẳng d : y t ; d ': y 1 t . z 2 2t z 1 2t Biết rằng có 2 đường thẳng có các đặc điểm: song song với P ; cắt d, d và tạo với d góc 30O. Tính cosin góc tạo bởi hai đường thẳng đó. 1 1 2 1 A. . B. . C. . D. . 5 2 3 2 Câu 51. Trong không gian với hệ trục toạ độ Oxyz, cho 3 điểm A 1;0;1 ; B 3; 2;0 ;C 1;2; 2 . Gọi P là mặt phẳng đi qua A sao cho tổng khoảng cách từ B và C đến P lớn nhất biết rằng P không cắt đoạn BC . Khi đó, điểm nào sau đây thuộc mặt phẳng P ? A. G 2; 0; 3 . B. F 3; 0; 2 . C. E 1;3;1 . D. H 0;3;1 Câu 52. Trong không gian với hệ trục toạ độ Oxyz, cho các điểm A 1;0;0 , B 0;b;0 ,C 0;0;c trong đó b, c dương và mặt phẳng P : y z 1 0 . Biết rằng mp ABC vuông góc với mp P và 1 d O, ABC , mệnh đề nào sau đây đúng? 3 A.b c 1. B. 2b c 1. C.b 3c 1. D.3b c 3. Câu 53. Trong không gian với hệ trục toạ độ Oxyz, cho 3 điểm A 1;2;3 ; B 0;1;1 ;C 1;0; 2 . Điểm M P :x y z 2 0 sao cho giá trị của biểu thức T MA2 2MB2 3MC 2 nhỏ nhất. Khi đó, điểm M cách Q :2x y 2z 3 0 một khoảng bằng 121 2 5 101 A. . B. 24. C. . D. . 54 3 54 Câu 54. Cho mặt phẳng ( ) : x y 2z 1 0; ( ) : 5x 2y 11z 3 0 . Góc giữa mặt phẳng ( ) và mặt phẳng ( ) bằng A. 120. B. 30. C.150. D. 60. Trang 8/31
  9. Câu 55. Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P) có phương trình x y 3 0. Điểm H(2; 1; 2) là hình chiếu vuông góc của gốc tọa độ O trên một mặt phẳng (Q). Góc giữa hai mặt phẳng (P) và (Q) bằng A. 45. B. 30. C. 60. D. 120. Câu 56. Cho vectơ u 2; v 1; u, v . Gócgiữa vectơ v và vectơ u v bằng: 3 A. 60. B. 30. C. 90. D. 45. Câu 57. Trong không gian với hệ trục toạ độ Oxyz, cho đường thẳng x 3 y 1 z 1 2x 3y 3z 9 0 d : , : . Góc giữa đường thẳng d và đường thẳng 9 5 1 x 2y z 3 0 bằng A. 90. B. 30. C. 0. D. 180. Câu 58. Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng ( ) : 2x y 2z 10 0; đường x 1 1 y z 3 thẳng d : . Góc giữa đường thẳng d và mặt phẳng ( ) bẳng 1 2 3 A. 30. B. 90. C. 60. D. 45. Câu 59. Trong không gian với hệ trục toạ độ Oxyz, phương trình các đường thẳng qua A(3; – 1;1), nằm x y 2 z trong (P): x – y z – 5 0và hợp với đường thẳngd: một góc 45 0 là 1 2 2 x 3 t x 3 3t A. 1 : y 1 t , t R; 2 : y 1 2t , t R. z 1 z 1 5t x 3 2t x 3 15t B. 1 : y 1 2t , t R; 2 : y 1 38t , t R. z 1 z 1 23t x 3 t x 3 15t C. 1 : y 1 t , t R; 2 : y 1 8t , t R. z 1 z 1 23t x 3 t x 3 15t D. 1 : y 1 t , t R; 2 : y 1 8t , t R. z 1 t z 1 23t Câu 60. Cho hình lập phương ABCD.A'B'C 'D' có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm các cạnh A'B', BC, DD'. Góc giữa đường thẳng AC’ và mặt phẳng (MNP) là A. 30. B. 120. C. 60. D. 90. Câu 61. Trong không gian với hệ trục toạ độ Oxyz, gọi(P) là mặt phẳng chứa đường thẳng x 1 2t d : y 2 t và tạo với trục Ox góc có số đo lớn nhất.Khi đó, khoảng cách từ điểm z 3t A 1; 4;2 đến mp P là 12 35 4 3 20 6 2 6 A. . B. . C. . D. . 35 3 9 3 Trang 9/31
  10. Câu 62. Trong không gian với hệ trục toạ độ Oxyz, cho điểm M 2;1; 12 , N 3;0;2 . Gọi P là mặt phẳng đi qua M , N và tạo với mặt phẳng Q :2x 2y 3z 4 0 góc có số đo nhỏ nhất. Điểm A 3;1;0 cách mp P một khoảng là 6 13 22 6 1 A. . B. . C. . D. . 13 11 2 22 Câu 63. Trong không gian với hệ trục toạ độOxyz, cho P :x y z 7 0 và hai đường thẳng x 1 y 1 z 2 x 2 y 3 z 4 : ; : . 1 1 1 1 2 2 3 5 Gọi M là điểm thuộc đường thẳng 1 , M có toạ độ là các số dương, M cách đều 2 và P . Khoảng cách từ điểm M đến mp( P ) là 2 A. 2 3. B. 2. C. 7. D. . 3 Câu 64. Trong không gian với hệ trục toạ độ Oxyz, cho 2 điểm A 1; 4;3 ; B 1;0;5 và đường thẳng x 3t d : y 3 2t.Gọi C là điểm trên đường thẳng d sao cho diện tích tam giác ABC nhỏ nhất. z 2 Khoảng cách giữa điểm C và gốc toạ độ O là A. 6. B. 14. C. 14. D. 6. Câu 65. Trong không gian với hệ trục toạ độOxyz, cho điểm A 2;5;3 và đường thẳng x 1 y z 2 d : .Gọi P là mặt phẳng đi qua điểm A , song song với đường thẳng d sao 2 1 2 cho khoảng cách giữa d và P lớn nhất. Khoảng cách từ điểm B 2;0; 3 đến mp P là 7 2 5 2 18 A. . B. . C. 7. D. . 3 3 18 x 4 3t Câu 66. Trong không gian với hệ trục toạ độ Oxyz, cho điểm A 4; 3;2 và đường thẳng d : y 2 2t. z 2 t Gọi P là mặt phẳng chứa đường thẳng d sao cho khoảng cách từ A đến P lớn nhất. Tính khoảng cách từ điểm B 2;1; 3 đến mặt phẳng P đó. A. 2 3. B. 2. C. 0. D. 38. Câu 67. Trong không gian với hệ trục toạ độ Oxyz, cho 3 điểm A 1; 1; 2 ;B 1; 2; 1 ;C 3; 4; 1 . Gọi P là mặt phẳng đi qua A sao cho tổng khoảng cách từ B và C đến P lớn nhất biết rằng (P) không cắt đoạn BC . Khi đó, điểm nào sau đây thuộc mặt phẳng P ? A. F 1;2;0 . B. E 2; 2;1 . C. G 2;1; 3 . D. H 1; 3;1 . Câu 68. Trong không gian với hệ trục toạ độ Oxyz, cho các điểm A a;0;0 , B 0;2;0 ,C 0;0;c trong đó a,c dương và mặt phẳng P :2x z 3 0 . Biết rằng mp ABC vuông góc với mp P và 2 d O, ABC , mệnh đề nào sau đây đúng? 21 A. a 4 c 3. B. a 2 c 5. C. a c 1. D. 4a c 3. Trang 10/31
  11. Câu 69. Trong không gian với hệ trục toạ độ Oxyz, cho 3 điểm A 2; 2; 3 ;B 1; 1; 3 ;C 3; 1; 1 . Điểm M P :x 2z 8 0 sao cho giá trị của biểu thức T 2MA2 MB2 3MC2 nhỏ nhất. Khi đó, điểm M cách Q : x 2y 2z 6 0 một khoảng bằng 2 4 A. . B.2.C. . D. 4. 3 3 Câu 70. Tính khoảng cách từ điểm H(3; – 1;– 6) đến mặt phẳng ( ) : x y z 1 0 . 8 3 A. . B. 9.C. 3 3. D. 3. 3 Câu 71. Tính khoảng cách giữa hai mặt phẳng song song (P): 2x y 2z 0 và (Q) 2x y 2z 7 0 . 7 7 A. . B. 7.C. . D. 2. 9 3 Câu 72. Khoảng cách từ điểm K(1;2;3) đến mặt phẳng (Oxz) bằng A. 2.B. 1.C. 3.D. 4. x 1 5t Câu 73. Tính khoảng cách giữa mặt phẳng ( ) : 2x y 2z 4 0 và đường thẳng d: y 2 2t . z 4t 8 4 A. . B. 0.C. . D. 4. 3 3 Câu 74. Khoảng cách từ giao điểm A của mặt phẳng (R) : x y z 3 0 với trục Oz đến mặt phẳng ( ) : 2x y 2z 1 0 bằng 7 5 4 A. . B. . C. . D. 0. 3 3 3 x 1 3t Câu 75. Cho hai mặt phẳng (P) : x y 2z 1 0, (Q) : 2x y z 0 và đường thẳng d: y 2 t . z 1 t Gọi d(d,(P)) , d(d,(Q)) , d((P),(Q)) lần lượt là khoảng cách giữa đường thẳng d và (P), d và (Q), (P) và (Q). Trong các mệnh đề sau, tìm mệnh đề sai: 6 A. d(d,(P)) 0. B. d(d,(Q)) . C. d((P),(Q)) 0. D. d(d,(Q)) 0. 2 x 1 t Câu 76. Khoảng cách từ điểm C( 2;1;0) đến mặt phẳng (Oyz) và đến đường thẳng : y 4 t lần z 6 2t lượt là d1 và d2 . Chọn khẳng định đúng trong các khẳng định sau: A. d1 d2. B. d1 d2. C. d1 0. D. d2 =1. Câu 77. Khoảng cách từ điểm B(1;1;1) đến mặt phẳng (P) bằng 1. Chọn khẳng định đúngtrong các khẳng định sau: A. (P): 2x y – 2z 6 0. B. (P): x y z – 3 0. B. (P): 2x y 2z – 2 0. D. (P): x y z – 3 0 . Câu 78. Trong không gian Oxyz cho mặt phẳng :2x y 2z 1 0 và mặt phẳng  :2x y 2z 5 0 . Tập hợp các điểm M cách đều mặt phẳng và  là A. 2x y 2z 3 0. B. 2x y 2z 3 0. Trang 11/31
  12. C. 2x y 2z 3 0. D. 2x y 2z 3 0. Câu 79. Trong không gian Oxyz cho mặt phẳng :x 2y 2z 1 0 và mặt phẳng  : 2x y 2z 1 0 . Tập hợp các điểm cách đều mặt phẳng và  là x y 2 0 x y 2 0 A. . B. . 3x 3y 4z 4 0 3x 3y 4z 4 0 x y 2 0 x y 2 0 C. . D. . 3x 3y 4z 4 0 3x 3y 4z 4 0 D. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM I – ĐÁP ÁN 8.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 B A A B D C A D D A C C B C D A D C A A 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 A B A C A D A C C A B D A C C A A D A B 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 B D D C A A C A A D C A D D A C C B C D 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 A D A C A A B A D C C A A A B A C A D A Trang 12/31
  13. II –HƯỚNG DẪN GIẢI Câu 1. Trong không gian Oxyz, khoảng cách từ điểm A 1; 2; 2 đến mặt phẳng ( ) : x 2y 2z 4 0 bằng: 13 1 A. 3. B. 1. C. . D. . 3 3 Hướng dẫn giải 1.x 2.y 2.z 4 d(A,( )) A A A 1. 12 22 ( 2)2 Câu 2. Tính khoảng cách giữa hai mặt phẳng song song ( ) : 2x y 2z 4 0 và ( ) : 2x y 2z 2 0 . 10 4 A. 2.B. 6.C. . D. . 3 3 Hướng dẫn giải Khoảng cách giữa hai mặt phẳng song song bằng khoảng cách từ một điểm bất kỳ của mặt phẳng này đến mặt phẳng kia. 2.2 1.0 2.0 2 Ta lấy điểm H(2; 0; 0) thuộc ( ) . Khi đó d ( ),( ) d H,( ) 2 . 22 ( 1)2 ( 2)2 Câu 3. Khoảng cách từ điểm M 3; 2; 1 đến mặt phẳng (P): Ax Cz D 0 , A.C.D 0 . Chọn khẳng định đúngtrong các khẳng định sau: 3A C D A 2B 3C D A. d(M ,(P)) B. d(M ,(P)) . A2 C 2 A2 B2 C 2 3A C 3A C D C. d(M ,(P)) . D. d(M ,(P)) . A2 C 2 32 12 x 1 t Câu 4. Tính khoảng cách giữa mặt phẳng ( ) : 2x y 2z 4 0 và đường thẳng d: y 2 4t . z t 1 4 A. . B. . C. 0.D. 2. 3 3 Hướng dẫn giải Đường thẳng d song song với mặt phẳng ( ) . Khoảng cách giữa đường thẳng và mặt phẳng song song bằng khoảng cách từ một điểm bất kỳ của đường thẳng đến mặt phẳng. Ta lấy điểm H 1; 2; 0 thuộc đường thẳng d. Khi đó: 2.1 1.2 2.0 4 4 d(d,( )) d(H,( )) . 22 ( 1)2 ( 2)2 3 Câu 5. Khoảng cách từ điểm A 2; 4; 3 đến mặt phẳng ( ) : 2x y 2z 1 0 và ( ) : x 0 lần lượt là d(A,( )) , d(A,( )) . Chọn khẳng định đúng trong các khẳng định sau: A. d A,( ) 3 . d A,( ) . B. d A,( ) d A,( ) . C. d A,( ) = d A,( ) . D. 2. d A,( ) = d A,( ) . Hướng dẫn giải Trang 13/31
  14. 2.x y 2.z 1 x d A,( ) A A A 1 ; d A,( ) A 2. 22 12 22 12 Kết luận: d A,( ) 2.d A,( ) . Câu 6. Tìm tọa độ điểm Mtrên trục Oy sao cho khoảng cách từ điểm M đến mặt phẳng (P): 2x y 3z 4 0 nhỏ nhất? 4 A. M 0;2;0 . B. M 0;4;0 . C. M 0; 4;0 . D. M 0; ;0 . 3 Hướng dẫn giải Khoảng cách từ M đến (P) nhỏ nhất khi M thuộc (P). Nên M là giao điểm của trục Oy với mặt phẳng (P). Thay x = 0, z = 0 vào phương trình (P) ta được y = 4. Vậy M(0; 4;0). Cách giải khác Tính khoảng cách từ điểm M trong các đáp án đến mặt phẳng (P) sau đó so sánh chọn đáp án. Câu 7. Khoảng cách từ điểm M 4; 5;6 đến mặt phẳng (Oxy), (Oyz) lần lượt bằng: A. 6 và 4.B. 6 và 5.C. 5 và 4.D. 4 và 6. Hướng dẫn giải d M , Oxy zM 6 ; d(M ,(Oyz)) xM 4. Câu 8. Tính khoảng cách từ điểm A x0; y0; z0 đến mặt phẳng (P) : Ax By Cz D 0 , với A.B.C.D 0 . Chọn khẳng định đúngtrong các khẳng định sau: Ax0 By0 Cz0 A. d A,(P) Ax0 By0 Cz0. B. d A,(P) . A2 B2 C 2 Ax By Cz D Ax By Cz D C. d A,(P) 0 0 0 . D. d A,(P) 0 0 0 . A2 C 2 A2 B2 C 2 Câu 9. Tính khoảng cách từ điểm B x0; y0;z0 đến mặt phẳng (P): y + 1 = 0. Chọn khẳng định đúngtrong các khẳng định sau: y0 1 A. y0. B. y . C. . D. y 1 . 0 2 0 Câu 10. Khoảng cách từ điểm C 2; 0; 0 đến mặt phẳng (Oxy) bằng: A. 0.B. 2.C. 1.D. 2. Hướng dẫn giải Điểm C thuộc mặt phẳng (Oxy) nên d C,(Oxy) 0 Câu 11. Khoảng cách từ điểm M 1;2;0 đến mặt phẳng (Oxy), (Oyz), (Oxz). Chọn khẳng định saitrong các khẳng định sau: A. d M ,(Oxz) 2. B. d M ,(Oyz) 1. C. d M ,(Oxy) 1. D. d M ,(Oxz) d M ,(Oyz) . Câu 12. Khoảng cách từ điểm A x0; y0; z0 đến mặt phẳng (P): Ax By Cz D 0 , với D 0 bằng 0 khi và chỉ khi: A. Ax0 By0 Cz0 D. B. A (P). C Ax0 By0 Cz0 D. D. Ax0 By0 Cz0.= 0. Câu 13. Khoảng cách từ điểm O đến mặt phẳng (Q) bằng 1. Chọn khẳng định đúngtrong các khẳng định sau: A. (Q): x y z – 3 0. B. (Q): 2x y 2z – 3 0. Trang 14/31
  15. C. (Q): 2x y – 2z 6 0. D. (Q): x y z – 3 0. Hướng dẫn giải Dùng công thức khoảng cách từ 1 điểm đến mặt phẳng, sau đó tính khoảng cách lần lượt trong mỗi trường hợp và chọn đáp án đúng. x 1 t Câu 14. Khoảng cách từ điểm H (1;0;3) đến đường thẳng d1 : y 2t , t R và mặt phẳng (P): z 3 t z 3 0 lần lượt là d(H,d1) và d(H,(P)) . Chọn khẳng định đúngtrong các khẳng định sau: A d H,d1 d H,(P) . B. d H,(P) d H,d1 . C. d H,d1 6.d H,(P) . D. d H,(P) 1. Hướng dẫn giải Vì H thuộc đường thẳng d1 và H thuộc mặt phẳng (P) nên khoảng cách từ điểm H đến đường thẳng d1 bằng 0 và khoảng cách từ điểm H đến mặt phẳng (P) bằng 0. x 2 t Câu 15. Tính khoảng cách từ điểm E (1;1;3) đến đường thẳng d : y 4 3t , t R bằng: z 2 5t 1 4 5 A . B. . C. . D. 0 35 35 35 Hướng dẫn giải + Gọi (P) là mặt phẳng đi qua E và vuông góc với (P). Viết phương trình (P) + Gọi H là giao điểm của đường thẳng d và (P). Tìm tọa độ H + Tính độ dài EH. Khoảng cách từ điểm E (1;1;3) đến đường thẳng d bằng EH. Cách giải khác: Vì E thuộc đường thẳng d nên khoảng cách từ điểm E (1;1;3) đến đường thẳng d bằng 0. Câu 16. Cho vectơ u 2; 2; 0 ; v 2; 2; 2 . Góc giữa vectơ u và vectơ v bằng: A.135 .B. 45 .C. 60 .D. 150 . Hướng dẫn giải u.v 2. 2 2. 2 2.0 1 Ta có cos(u, v) (u, v) 135. u . v 2 2 2 ( 2)2 ( 2)2 . 2 2 22 x 2 t x 1 t Câu 17. Cho hai đường thẳng d1 : y 1 t và d2 : y 2 . Góc giữa hai đường thẳng d 1 và d2 z 3 z 2 t là: A30.B. 120 .C. 150 .D. 60 . Hướng dẫn giải   Gọi u1; u2 lần lượt là vectơ chỉ phương của đường thẳng d1; d2.   u1 (1; 1; 0); u2 ( 1; 0; 1) Trang 15/31
  16.     u1.u2 1 1 Áp dụng công thức ta có cos d ,d cos u , u   . 1 2 1 2 2 u1 . u2 1 1. 1 1 d1,d2 60 . x y z Câu 18. Cho đường thẳng : và mặt phẳng (P): 5x 11y 2z 4 0 . Góc giữa đường 1 2 1 thẳng và mặt phẳng (P) là: A. 60 .B. 30.C. 30.D. 60 . Hướng dẫn giải Gọi u; n lần lượt là vectơ chỉ phương, pháp tuyến của đường thẳng và mặt phẳng (P). u 1; 2; 1 ; n 5; 11; 2 u.n 1.5 11.2 1.2 1 Áp dụng công thức ta có sin ,(P) cos u,n . u . n 52 112 22 . 12 22 12 2 , P 30. Câu 19. Cho mặt phẳng ( ) : 2x y 2z 1 0; ( ) : x 2y 2z 3 0 . Cosin góc giữa mặt phẳng ( ) và mặt phẳng ( ) bằng: 4 4 4 4 A. B. . C. . D. . 9 9 3 3 3 3 Hướng dẫn giải   Gọi n , n lần lượt là vectơ pháp tuyến của mặt phẳng ( ) và ( ) .   Ta có n (2; 1; 2); n (1; 2; 2) . Áp dụng công thức:     n . n  2.1 1.2 2.2 4 cos(( ),( )) cos(n , n )   .  2 2 2 2 2 2 9 n . n 2 ( 1) 2 . (1 2 ( 2) Câu 20. Cho mặt phẳng (P) : 3x 4y 5z 2 0 và đường thẳng d là giao tuyến của hai mặt phẳng ( ) : x 2y 1 0; ( ) : x 2z 3 0 . Gọi là góc giữa đường thẳng d và mặt phẳng (P). Khi đó: A. 60 .B. 45 .C. 30.D. 90 . Hướng dẫn giải x 2t 1  Đường thẳng d có phương trình: y t , t R . Suy ra VTCP của d là ud (2; 1; 1) 2 3 z t 2   ud .n 2.3 1.4 1.5 3 Ta có sin d,(P) cos ud , n  . 2 2 2 2 2 2 2 ud . n 2 1 1 . 3 4 5 (d,(P)) 60 . Trang 16/31
  17. Câu 21. Cho mặt phẳng ( ) : 3x 2y 2z 5 0 . Điểm A(1; – 2; 2). Có bao nhiêu mặt phẳng đi qua A và tạo với mặt phẳng ( ) một góc 45. A. Vô số.B. 1.C. 2.D. 4. Hướng dẫn giải [Phương pháp tự luận]  Gọi n a; b; c là vectơ pháp tuyến của mặt phẳng ( ) cần lập.     n . n  3.a 2.b 2.c 2 cos ( ),( ) cos n , n   2 2 2 2 2 2 2 n . n 3 ( 2) 2 . a b c 2(3a 2b 2c)2 17(a2 b2 c2 ) Phương trình trên có vô số nghiệm.  Suy ra có vô số vectơ n (a; b; c) là véc tơ pháp tuyến của ( ) . Suy ra có vô số mặt phẳng ( ) thỏa mãn điều kiện bài toán [Phương pháp trắc nghiệm] Dựng hình. Giả sử tồn tại mặt phẳng ( ) thỏa mãn điều kiện bài toán. (Đi qua A và tạo với mặt phẳng ( ) một góc 45 ). Gọi là đường thẳng đi qua A và vuông góc với mặt phẳng ( ) . Sử dụng phép quay theo trục với mặt phẳng ( ) . Ta được vô số mặt phẳng ( ') thỏa mãn điều kiện bài toán. Câu 22. Hai mặt phẳng nào dưới đây tạo với nhau một góc 60 A. (P) : 2x 11y 5z 3 0 và (Q) : x 2y z 2 0 . B.(P) : 2x 11y 5z 3 0 và (Q) : x 2y z 5 0 . C. (P) : 2x 11y 5z 21 0 và (Q) : 2x y z 2 0 . D. (P) : 2x 5y 11z 6 0 và (Q) : x 2y z 5 0 . Hướng dẫn giải Áp dụng công thức tính góc giữa hai mặt phẳng.   nP.nQ 1 cos (P),(Q)   cos60 2 nP . nQ Xác định các vectơ pháp tuyến của mặt phẳng (P) và (Q). Thay các giá trị vào biểu thức để tìm giá trị đúng. Dùng chức năng CALC trong máy tính bỏ túi để hỗ trợ việc tính toán nhanh nhất. Câu 23. Cho vectơ u(1; 1; 2), v(1; 0; m) . Tìm m để góc giữa hai vectơ u, v có số đo bằng 45 . Một học sinh giải như sau: 1 2m Bước 1: Tính cos u, v 6. m2 1 1 2m 1 Bước 2: Góc giữa u, v có số đo bằng 45 nên 6. m2 1 2 1 2m 3(m2 1) (*) Bước 3: Phương trình (*) (1 2m)2 3(m2 1) Trang 17/31
  18. m 2 6 m2 4m 2 0 m 2 6. Bài giải đúng hay sai? Nếu sai thì sai ở bước nào? A. Sai ở bước 3.B. Sai ở bước 2.C. Sai ở bước 1.D. Đúng. Hướng dẫn giải Phương trình (*) chỉ bình phương được hai vế khi biến đổi tương đương nếu thỏa mãn 1 2m 0 . Bài toán đã thiếu điều kiện để bình phương dẫn đến sai nghiệm m 2 6 . Câu 24. Cho hai điểm A(1; 1; 1); B(2; 2; 4) . Có bao nhiêu mặt phẳng chứa A, Bvà tạo với mặt phẳng ( ) : x 2y z 7 0 một góc 60 . A. 1.B. 4.C. 2.D. Vô số. Hướng dẫn giải [Phương pháp tự luận]   AB(1; 1; 3), n (1; 2; 1)  Gọi n (a; b; c) là vectơ pháp tuyến của mặt phẳng ( ) cần lập.     n .n cos ( ),( ) cos n , n    n . n 1.a 2.b 1.c 1 . 12 ( 2)2 12 . a2 b2 c2 2 2(a 2b c)2 3(a2 b2 c2 ) (1) Mặt khác vì mặt phẳng ( ) chứa A, B nên:   n .AB 0 a b 3c 0 a b 3c Thế vào (1) ta được: 2b2 13bc 11c2 0 (2)  Phương trình (2) có 2 nghiệm phân biệt. Suy ra có 2 vectơ n a; b; c thỏa mãn. Suy ra có 2 mặt phẳng. [Phương pháp trắc nghiệm] Dựng hình Câu 25. Gọi là góc giữa hai đường thẳng AB, CD. Khẳng định nào sau đây là khẳng định đúng:     AB.CD AB.CD A. cos   . B. cos   . AB . CD AB . CD     AB CD AB.CD . C. cos   . D. cos   . AB,CD AB . CD Hướng dẫn giải Áp dụng công thức ở lý thuyết. Câu 26. Cho hình lập phương ABCD.A'B'C 'D' có cạnh bằng a. Gọi M, N, P lần lượt là trung điểm các cạnh BB', CD, A'D'. Góc giữa hai đường thẳng MP và C’N là: A. 30o.B. 120 o.C. 60 o.D. 90 o. Hướng dẫn giải Chọn hệ trục tọa độ sao cho A  O(0; 0; 0) Trang 18/31
  19. Suy ra B(a; 0; 0); C(a; a; 0); D(0; a; 0) A'(0; 0; a); B'(a; 0; a); C '(a; a; a); D'(0; a; a) a a a M a; 0; ; N ; a; 0 ; P 0; ; a 2 2 2  a a  a   Suy ra MP a; ; ; NC ' ; 0; a MP.NC ' 0 2 2 2 (MP,NC ') 90 Câu 27. Cho hình chóp A.BCD có các cạnh AB, AC, AD đôi một vuông góc. ABC cân, cạnh bên bằng a, AD 2a . Cosin góc giữa hai đường thẳng BD và DC là: 4 2 4 1 A. . B. . C. . D. . 5 5 5 5 Hướng dẫn giải [Phương pháp tự luận] Chọn hệ trục tọa độ sao cho A  O(0; 0; 0) Suy ra B(a; 0; 0); C(0; a; 0); D(0; 0; 2a)   Ta có DB(a; 0; 2a); DC(0; a; 2a)     DB. DC 4 cos(DB, DC) cos(DB; DC)   . DB . DC 5 Câu 28. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2, AC = 5 . SAC vuông cân tại A. K là trung điểm của cạnh SD. Hãy xác định cosin góc giữa đường thẳng CK và AB? 4 2 4 2 A. . B. . C. . D. . 17 11 22 22 Hướng dẫn giải Vì ABCD là hình chữ nhật nên AD AC2 CD2 1 Chọn hệ trục tọa độ sao cho A  O(0; 0; 0) z Suy ra B(0; 2; 0); C(1; 2; 0); D(1; 0; 0) S 1 5 S 0; 0; 5 ; K ; 0; 2 2  1 5  Suy ra CK ; 2; ; AB 0; 2; 0 K 2 2 A B y     CK. AB 4 cos CK, AB cos CK; AB   . CK AB 22 D C . x Câu 29. Trong không gian với hệ tọa độ Oxyz, cho bốn điểm điểm A( 3; 4; 5); B(2; 7; 7); C(3; 5; 8); D( 2; 6; 1) . Cặp đường thẳng nào tạo với nhau một góc 60 ? A. DB và AC.B. AC và CD.C. AB và CB.D.CB và CA. Hướng dẫn giải   Tính tọa độ các vectơ sau đó thay vào công thức: cos(d,d ') cos(ud ,ud ' để kiểm tra. Câu 30. Trong không gian với hệ tọa độ Oxyz, mặt phẳng nào dưới đây đi qua A(2; 1; – 1) tạo với trục Oz một góc 30 ? Trang 19/31
  20. A. 2(x 2) (y 1) (z 2) 3 0. B. (x 2) 2(y 1) (z 1) 2 0. C. 2(x 2) (y 1) (z 2) 0. D. 2(x 2) (y 1) (z 1) 2 0. Hướng dẫn giải Gọi phương trình mặt phẳng ( ) cần lập có dạng A(x 2) B(y 1) C(z 1) 0; n(A; B; C) Oz có vectơ chỉ phương là k(0; 0; 1) . n.k Áp dụng công thức sin(( ), Oz)   sin30 n . k Sau khi tìm được các vectơ pháp tuyến thỏa mãn, thay giá trị của A vào để viết phương trình mặt phẳng. Câu 31. Cho mặt phẳng (P) :3x 4y 5z 8 0 . Đường thẳng d là giao tuyến của hai mặt phẳng ( ) : x 2y 1 0; ( ) : x 2z 3 0 . Góc giữa d và (P) là: A. 120. B. 60. C.150. D. 30. Hướng dẫn giải  Ta có nP (3; 4; 5)    n n , n (2; 1; 1) d    n .u P d 3 Áp dụng công thức sin((P), d)   . 2 nP . ud   Câu 32. Gọi là góc giữa hai vectơ AB, CD . Khẳng định nào sau đây là đúng:     AB.CD AB.CD A. cos   .B. cos   . AB . CD AB . CD     AB.CD AB.DC C. sin   . D. cos   AB , CD AB . DC Hướng dẫn giải Áp dụng công thức ở lý thuyết. Câu 33. Cho ba mặt phẳng (P) : 2x y 2z 3 0; (Q) : x y z 2 1; (R) : x 2y 2z 2 0 . Gọi 1; 2; 3 lần lượt là góc giữa hai mặt phẳng (P) và (Q), (Q) và (R), (R) và (P). Khẳng định nào sau đây là khẳng định đúng. A. 1 3 2 . B. 2 3 1. C. 3 2 1. D. 1 2 3 . Hướng dẫn giải Áp dụng công thức tính góc giữa hai mặt phẳng. Sử dụng máy tính bỏ túi để tính góc rồi so sánh các giá trị đó với nhau. VẬN DỤNG Câu 34. Trong không gian với hệ tọa độOxyz, cho mặt phẳng : x 2y 2z m 0 vàđiểm A 1;1;1 . Khi đó m nhận giá trị nào sau đây để khoảng cách từ điểm A đến mặt phẳng bằng 1? A. 2.B. 8.C. 2 hoặc 8 .D. 3. 5 m m 5 3 m 2 Hướng dẫn giải: d A, 1 3 m 5 3 m 8 Trang 20/31
  21. Câu 35. Trong không gian với hệ tọa độOxyz, mặt phẳng cắt các trục Ox, Oy, Oz lần lượt tại 3 điểm A 2;0;0 , B 0;3;0 ,C 0;0;4 . Khi đó khoảng cách từ gốc tọa độ O đến mặt phẳng ABC là 61 12 61 A. . B.4.C. . D.3. 12 61 Hướng dẫn giải x y z 12 61 Cách 1: : 1 6x 4y 3z 12 0 ; d O, ABC 2 3 4 61 Cách 2: Tứ diệnOABC cóOA, OB, OC đôi một vuông góc, khi đó 1 1 1 1 61 12 61 d O, ABC d 2 O, ABC OA2 OB2 OC 2 144 61 y 0 Câu 36. Trong không gian với hệ tọa độ Oxyz cho điểm M 1;0;0 và N 0;0; 1 , 2x y 2z 2 0 mặt phẳng P qua điểm M , N và tạo với mặt phẳng Q : x y 4 0 một góc bằng 45O . Phương trình mặt phẳng P là y 0 y 0 A. .B. . 2x y 2z 2 0 2x y 2z 2 0 2x y 2z 2 0 2x 2z 2 0 C. .D. . 2x y 2z 2 0 2x 2z 2 0 Hướng dẫn giải  2 2 2 Gọi vectơ pháp tuyến của mp P và Q lần lượt là nP a;b;c a b c 0 ,  nQ P qua M 1;0;0 P : a x 1 by cz 0 P qua N 0;0; 1 a c 0   O O a b 1 a 0 P hợp với Q góc 45 cos nP ,nQ cos45 2a2 b2 2 2 a 2b Với a 0 c 0 chọn b 1 phương trình P : y 0 Với a 2b chọn b 1 a 2 phương trình mặt phẳng P : 2x y 2z 2 0 . Câu 37. Trong không gian Oxyz , cho điểm A 2; 0; 1 , đường thẳng d qua điểm A và tạo với trục Oy góc 45O . Phương trình đường thẳng d là x 2 y z 1 x 2 y z 1 2 5 1 2 5 1 A. .B. x 2 y z 1 x 2 y z 1 2 5 1 2 5 1 x 2 y z 1 x 2 y z 1 2 5 1 2 5 1 C. D. x 2 y z 1 x 2 y z 1 2 5 1 2 5 1 Hướng dẫn giải Trang 21/31
  22. Cách 1: Điểm M 0;m;0 Oy , j 0;1;0 là vectơ chỉ phương của trục   m 1 .Oy , AM 2; m; 1 cos AM , j cos 45O m 5 nên có 2 đường m2 5 2 thẳng: x 2 y z 1 x 2 y z 1 ; 2 5 1 2 5 1   1   1 Cách 2: u1 2; 5; 1 cos u1, j ; u2 2; 5; 1 cos u2 , j 2 2 Đường thẳng d đi qua điểm A 2;0;1 nên chọn đáp án A. Câu 38. Trong không gian Oxyz cho mặt phẳng P : x y z 3 0 và mặt phẳng Q : x y z 1 0. Khi đó mặt phẳng R vuông góc với mặt phẳng P và Q sao cho khoảng cách từ O đến mặt phẳng R bằng 2 , có phương trình là A. 2x 2z 2 2 0 .B. x z 2 2 0 . x z 2 2 0 C. x z 2 2 0 .D. . x z 2 2 0 Hướng dẫn:     n 1;1;1 ,n 1; 1;1 n ,n 2;0; 2 P Q P Q D D 4 2 Mặt phẳng R : 2x 2z D 0 d O, R 2 8 D 4 2 Vậy phương trình mp R : x z 2 2 0; x z 2 2 0 Câu 39. Tập hợp các điểm M x; y; z trong không gian Oxyz cách đều hai mặt phẳng P :x y 2z 3 0 và Q :x y 2z 5 0 thoả mãn: A. x y 2z 1 0 .B. x y 2z 4 0 . C. x y 2z 2 0 .D. x y 2z 4 0 . Hướng dẫn: M x; y; z . Ta có x y 2z 3 x y 2z 5 d M , P d M , Q 6 6 x y 2z 3 x y 2z 5 x y 2z 1 0 Câu 40. Tập hợp các điểm M x; y; z trong không gian Oxyz cách đều hai mặt phẳng P :x 2y 2z 7 0 và mặt phẳng Q :2x y 2z 1 0 thoả mãn: x 3y 4z 8 0 A. x 3y 4z 8 0. B. . 3x y 6 0 C. 3x y 6 0. D.3x 3y 4z 8 0. Hướng dẫn giải x 2y 2z 7 2x y 2z 1 Cho điểm M x; y; z , d M , P d M , Q 3 3 x 3y 4z 8 0 . 3x y 6 0 Trang 22/31
  23. Câu 41. Trong không gian Oxyz cho điểm M thuộc trục Oxcách đều hai mặt phẳng P : x y 2z 3 0 và Oyz .Khitọa độ điểm M là 3 3 3 3 A. ;0;0 và ;0;0 . B. ;0;0 và ;0;0 . 1 6 6 1 1 6 1 6 6 1 6 1 1 6 1 6 C. ;0;0 và ;0;0 . D. ;0;0 và ;0;0 . 3 3 3 3 m 3 Hướng dẫn giải: Điểm M m;0;0 Ox ; d M , P d M , P m 6 3 m m 3 m 6 1 6 m 3 m 6 3 m 1 6 x 5 y 1 z 2 Câu 42. Trong không gianOxyz cho điểm A 3; 2;4 và đường thẳng d : . Điểm 2 3 2 M thuộc đường thẳng d sao cho M cách A một khoảng bằng 17 . Tọa độ điểm M là A. 5;1;2 và 6; 9; 2 .B. 5;1;2 và 1; 8; 4 . C. 5; 1;2 và 1; 5;6 . D. 5;1;2 và 1; 5;6 . Hướng dẫn giải  Cách 1: M 5 2t;1 3t;2 2t d ; AM 2 2m;3 3m; 2 2m 2 m 0 M 5;1;2 AM 17 17 1 m 17 m 2 M 1; 5;6 Cách 2: Kiểm tra các điểm thuộc đường thẳng d có 2 cặp điểm trong đáp án B và C thuộcđường thẳng d . Dùng công thức tính độ dài AM suy ra đáp án C thỏa mãn. Câu 43. Trong không gian Oxyz cho tứ diện ABCD có các đỉnh A 1;2;1 , B 2;1;3 ,C 2; 1;1 và D 0;3;1 . Phương trình mặt phẳng P đi qua 2 điểm A, B sao cho khoảng cách từ C đến P bằng khoảng cách từ D đến P là 4x 2y 7z 1 0 A. . B. 2x 3z 5 0. 2x 3z 5 0 4x 2y 7z 15 0 C. 4x 2y 7z 15 0. D. . 2x 3z 5 0 Hướng dẫn giải: Trường hợp 1: P qua AB và song song với CD , khi đó:   P có vectơ pháp tuyến là AB,CD 8; 4; 14 và C P P : 4x 2y 7z 15 0. Trường hợp 2: P qua AB cắt CD tại trung điểm I của đoạn CD . Ta có    I 1;1;1 AI 0; 1;0 , vectơ pháp tuyến của P là AB, AI 2;0;3 nên phương trình P : 2x 3z 5 0 . VẬN DỤNG CAO Trang 23/31
  24. Câu 44. Trong không gian với hệ trục toạ độ Oxyz, gọi P là mặt phẳng chứa đường thẳng x 1 y 2 z d : và tạo với trục Oy góc có số đo lớn nhất. Điểm nào sau đây thuộc 1 1 2 mp P ? A. E 3;0;4 . B. M 3;0;2 . C. N 1; 2; 1 . D. F 1;2;1 . Hướng dẫn giải: Gọi n a;b;c ;n 0 là VTPT của P ; là góc tạo bởi P và Oy , lớn nhất khi sin lớn nhất. Ta có n vuông góc với ud nên n b 2c;b;c b sin cos n, j 2b2 5c2 4bc Nếu b 0 thì sin = 0. 1 c 2 Nếu b 0 thì sin . Khi đó, sin lớn nhất khi 2 b 5 5c 2 6 b 5 5 chọn b 5;c 2 Vậy, phương trình mp P là x 5 y 2z 9 0 . Do đó ta có N P . Câu 45. Trong không gian với hệ trục toạ độ Oxyz, cho điểm M 0; 1; 2 , N 1; 1; 3 . Gọi P là mặt phẳng đi qua M , N và tạo với mặt phẳng Q :2x y 2z 2 0 góc có số đo nhỏ nhất. Điểm A 1;2;3 cách mp P một khoảng là 5 3 7 11 4 3 A. 3. B. . C. . D. . 3 11 3 Hướng dẫn giải:  P có VTPT n vuông góc với MN 1;2;1 nên n 2b c; b; c . Gọi là góc tạo bởi P và Q , nhỏ nhất khi cos lớn nhất. b Ta có cos 5b2 2c2 4bc Nếu b 0 thì cos = 0. 1 c Nếu b 0 thì cos . Khi đó, cos lớn nhất khi 1 chọn b 1;c 1 2 c b 2 1 3 b Vậy, phương trình mp P là x y z 3 0 . Do đó d A, P 3 . Câu 46. Trong không gian với hệ trục toạ độ Oxyz, cho P :x 2 y 2z 1 0 và 2 đường thẳng x 1 y z 9 x 1 y 3 z 1 : ; : . 1 1 1 6 2 2 1 2 Gọi M là điểm thuộc đường thẳng 1 , M có toạ độ là các số nguyên, M cách đều 2 và P . Khoảng cách từ điểm M đến mp Oxy là A.3. B. 2 2. C.3 2. D. 2. Hướng dẫn giải: Trang 24/31
  25. Gọi M t 1;t;6t 9 ,t Z .  M M ,u 0 Ta có d M , 2 d M , P d M , P u 11t 20 29t 2 88t 68 với M 1;3; 1 3 0 2 t 1 t Z 53  t 1 t 35 Vậy, M 0; 1;3 d M ,(Oxy) 3. Câu 47. Trong không gian với hệ trục toạ độ Oxyz, cho 2 điểm A 1;5;0 ; B 3;3;6 và đường thẳng x 1 y 1 z d : . Gọi C là điểm trên đường thẳng d sao cho diện tích tam giác ABC nhỏ 2 1 2 nhất. Khoảng cách giữa 2 điểm A và C là A. 29. B. 29. C. 33. D.7. Hướng dẫn giải: Ta có 2 đường thẳng AB và d chéo nhau. B Gọi C là điểm trên d và H là hình chiếu vuông góc H của C trên đường thẳng AB . A 1 Vì S AB CH 11CH nên S nhỏ nhất khi ABC 2 ABC CH nhỏ nhất CH là đoạn vuông góc chung của 2 đường thẳng AB và d . Ta có C 1; 0; 2 AC 29 . C Câu 48. Trong không gian với hệ trục toạ độ Oxyz, cho điểm A 10;2;1 và đường thẳng x 1 y z 1 d : . Gọi P là mặt phẳng đi qua điểm A , song song với đường thẳng d sao 2 1 3 cho khoảng cách giữa d và P lớn nhất. Khoảng cách từ điểm M 1;2;3 đến mp P là 97 3 76 790 2 13 3 29 A. . B. . C. . D. . 15 790 13 29 Hướng dẫn giải: P là mặt phẳng đi qua điểm A và song song với d đường thẳng d nên P chứa đường thẳng d đi qua H điểm A và song song với đường thẳng d . Gọi H là hình chiếu của A trên d , K là hình chiếu của H trên P . K d' Ta có d d, P HK AH ( AH không đổi) A GTLN của d(d, (P)) là AH P d d, P lớn nhất khi AH vuông góc với P . Khi đó, nếu gọi Q là mặt phẳng chứa A và d thì P vuông góc với Q . Trang 25/31
  26. nP ud ,nQ 98;14; 70 97 3 P :7x y 5z 77 0 d M , P . 15 Câu 49. Trong không gian với hệ trục toạ độ Oxyz, cho điểm A 2;5;3 và đường thẳng x 1 y z 2 d : . Gọi P là mặt phẳng chứa đường thẳng d sao cho khoảng cách từ A 2 1 2 đến P lớn nhất. Tính khoảng cách từ điểm M 1;2; 1 đến mặt phẳng P . 11 18 11 4 A. . B.3 2. C. . D. . 18 18 3 Hướng dẫn giải: Gọi H là hình chiếu của A trên d ; K là hình chiếu A của A trên P . Ta có d A, P AK AH (Không đổi) GTLN của d(d, (P)) là AH d A, P lớn nhất khi K  H . K d' Ta có H 3;1;4 , P qua H và  AH H P :x 4y z 3 0 P 11 18 Vậy d M , P . 18 Câu 50. Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng P :x y z 2 0 và hai đường x 1 t x 3 t thẳng d : y t ; d ': y 1 t . z 2 2t z 1 2t Biết rằng có 2 đường thẳng có các đặc điểm: song song với P ; cắt d, d và tạo với d góc 30O. Tính cosin góc tạo bởi hai đường thẳng đó. 1 1 2 1 A. . B. . C. . D. . 5 2 3 2 Hướng dẫn giải:  Gọi là đường thẳng cần tìm, nP là VTPT của mặt phẳng P . Gọi M 1 t;t;2 2t là giao điểm của và d ; M 3 t ;1 t ;1 2t là giao điểm của và d '  Ta có: MM ' 2 t t;1 t t; 1 2t 2t M P  MM // P   t 2 MM 4 t; 1 t;3 2t MM  nP  O 3 6t 9 t 4 Ta có cos30 cos MM ,ud 2 36t 2 108t 156 t 1 Trang 26/31
  27. x 5 x t Vậy, có 2 đường thẳng thoả mãn là 1 : y 4 t ; 2 : y 1. z 10 t z t 1 Khi đó, cos , . 1 2 2 Câu 51. Trong không gian với hệ trục toạ độ Oxyz, cho 3 điểm A 1;0;1 ; B 3; 2;0 ;C 1;2; 2 . Gọi P là mặt phẳng đi qua A sao cho tổng khoảng cách từ B và C đến P lớn nhất biết rằng P không cắt đoạn BC . Khi đó, điểm nào sau đây thuộc mặt phẳng P ? A. G 2; 0; 3 . B. F 3; 0; 2 . C. E 1;3;1 . D. H 0;3;1 Hướng dẫn giải: B Gọi I là trung điểm đoạn BC ; các điểm B , C , I I lần lượt là hình chiếu của B, C, I trên P . C Ta có tứ giác BCC B là hình thang và II là đường trung bình. d B, P d C, P BB CC 2II . B' Mà II IA (với IA không đổi) I' C' Do vậy, d B, P d C, P lớn nhất khi I  A A  P P đi qua A và vuông góc IA với I 2;0; 1 . P : x 2z 1 0 E 1;3;1 P . Câu 52. Trong không gian với hệ trục toạ độ Oxyz, cho các điểm A 1;0;0 , B 0;b;0 ,C 0;0;c trong đó b, c dương và mặt phẳng P : y z 1 0 . Biết rằng mp ABC vuông góc với mp P và 1 d O, ABC , mệnh đề nào sau đây đúng? 3 A.b c 1. B. 2b c 1. C.b 3c 1. D.3b c 3. Hướng dẫn giải: x y z Ta có phương trình mp( ABC) là 1 1 b c 1 1 ABC  P 0 b c (1) b c 1 1 1 1 1 Ta có d O, ABC 8(2) 3 1 1 3 b2 c2 1 b2 c2 1 Từ (1) và (2) b c b c 1. 2 Câu 53. Trong không gian với hệ trục toạ độ Oxyz, cho 3 điểm A 1;2;3 ; B 0;1;1 ;C 1;0; 2 . Điểm M P :x y z 2 0 sao cho giá trị của biểu thức T MA2 2MB2 3MC 2 nhỏ nhất. Khi đó, điểm M cách Q :2x y 2z 3 0 một khoảng bằng 121 2 5 101 A. . B. 24. C. . D. . 54 3 54 Trang 27/31
  28. Hướng dẫn giải: Gọi M x; y; z . Ta có T 6x2 6y2 6z2 8x 8y 6z 31 2 2 2 2 2 1 145 T 6 x y z 3 3 2 6 2 145 2 2 1 T 6MI với I ; ; 6 3 3 2 T nhỏ nhất khi MI nhỏ nhất M là hình chiếu vuông góc của I trên P 5 5 13 M ; ; . 18 18 9 BÀI TẬP TỔNG HỢP Câu 54. Cho mặt phẳng ( ) : x y 2z 1 0; ( ) : 5x 2y 11z 3 0 . Góc giữa mặt phẳng ( ) và mặt phẳng ( ) bằng A. 120. B. 30. C.150. D. 60. Câu 55. Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P) có phương trình x y 3 0. Điểm H(2; 1; 2) là hình chiếu vuông góc của gốc tọa độ O trên một mặt phẳng (Q). Góc giữa hai mặt phẳng (P) và (Q) bằng A. 45. B. 30. C. 60. D. 120. Câu 56. Cho vectơ u 2; v 1; u, v . Gócgiữa vectơ v và vectơ u v bằng: 3 A. 60. B. 30. C. 90. D. 45. Câu 57. Trong không gian với hệ trục toạ độ Oxyz, cho đường thẳng x 3 y 1 z 1 2x 3y 3z 9 0 d : , : . Góc giữa đường thẳng d và đường thẳng 9 5 1 x 2y z 3 0 bằng A. 90. B. 30. C. 0. D. 180. Câu 58. Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng ( ) : 2x y 2z 10 0; đường x 1 1 y z 3 thẳng d : . Góc giữa đường thẳng d và mặt phẳng ( ) bẳng 1 2 3 A. 30. B. 90. C. 60. D. 45. Câu 59. Trong không gian với hệ trục toạ độ Oxyz, phương trình các đường thẳng qua A(3; – 1;1), nằm x y 2 z trong (P): x – y z – 5 0và hợp với đường thẳngd: một góc 45 0 là 1 2 2 x 3 t x 3 3t A. 1 : y 1 t , t R; 2 : y 1 2t , t R. z 1 z 1 5t x 3 2t x 3 15t B. 1 : y 1 2t , t R; 2 : y 1 38t , t R. z 1 z 1 23t x 3 t x 3 15t C. 1 : y 1 t , t R; 2 : y 1 8t , t R. z 1 z 1 23t Trang 28/31
  29. x 3 t x 3 15t D. 1 : y 1 t , t R; 2 : y 1 8t , t R. z 1 t z 1 23t Câu 60. Cho hình lập phương ABCD.A'B'C 'D' có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm các cạnh A'B', BC, DD'. Góc giữa đường thẳng AC’ và mặt phẳng (MNP) là A. 30. B. 120. C. 60. D. 90. Câu 61. Trong không gian với hệ trục toạ độ Oxyz, gọi(P) là mặt phẳng chứa đường thẳng x 1 2t d : y 2 t và tạo với trục Ox góc có số đo lớn nhất.Khi đó, khoảng cách từ điểm z 3t A 1; 4;2 đến mp P là 12 35 4 3 20 6 2 6 A. . B. . C. . D. . 35 3 9 3 Câu 62. Trong không gian với hệ trục toạ độ Oxyz, cho điểm M 2;1; 12 , N 3;0;2 . Gọi P là mặt phẳng đi qua M , N và tạo với mặt phẳng Q :2x 2y 3z 4 0 góc có số đo nhỏ nhất. Điểm A 3;1;0 cách mp P một khoảng là 6 13 22 6 1 A. . B. . C. . D. . 13 11 2 22 Câu 63. Trong không gian với hệ trục toạ độOxyz, cho P :x y z 7 0 và hai đường thẳng x 1 y 1 z 2 x 2 y 3 z 4 : ; : . 1 1 1 1 2 2 3 5 Gọi M là điểm thuộc đường thẳng 1 , M có toạ độ là các số dương, M cách đều 2 và P . Khoảng cách từ điểm M đến mp( P ) là 2 A. 2 3. B. 2. C. 7. D. . 3 Câu 64. Trong không gian với hệ trục toạ độ Oxyz, cho 2 điểm A 1; 4;3 ; B 1;0;5 và đường thẳng x 3t d : y 3 2t.Gọi C là điểm trên đường thẳng d sao cho diện tích tam giác ABC nhỏ nhất. z 2 Khoảng cách giữa điểm C và gốc toạ độ O là A. 6. B. 14. C. 14. D. 6. Câu 65. Trong không gian với hệ trục toạ độOxyz, cho điểm A 2;5;3 và đường thẳng x 1 y z 2 d : .Gọi P là mặt phẳng đi qua điểm A , song song với đường thẳng d sao 2 1 2 cho khoảng cách giữa d và P lớn nhất. Khoảng cách từ điểm B 2;0; 3 đến mp P là 7 2 5 2 18 A. . B. . C. 7. D. . 3 3 18 Trang 29/31
  30. x 4 3t Câu 66. Trong không gian với hệ trục toạ độ Oxyz, cho điểm A 4; 3;2 và đường thẳng d : y 2 2t. z 2 t Gọi P là mặt phẳng chứa đường thẳng d sao cho khoảng cách từ A đến P lớn nhất. Tính khoảng cách từ điểm B 2;1; 3 đến mặt phẳng P đó. A. 2 3. B. 2. C. 0. D. 38. Câu 67. Trong không gian với hệ trục toạ độ Oxyz, cho 3 điểm A 1; 1; 2 ;B 1; 2; 1 ;C 3; 4; 1 . Gọi P là mặt phẳng đi qua A sao cho tổng khoảng cách từ B và C đến P lớn nhất biết rằng (P) không cắt đoạn BC . Khi đó, điểm nào sau đây thuộc mặt phẳng P ? A. F 1;2;0 . B. E 2; 2;1 . C. G 2;1; 3 . D. H 1; 3;1 . Câu 68. Trong không gian với hệ trục toạ độ Oxyz, cho các điểm A a;0;0 , B 0;2;0 ,C 0;0;c trong đó a,c dương và mặt phẳng P :2x z 3 0 . Biết rằng mp ABC vuông góc với mp P và 2 d O, ABC , mệnh đề nào sau đây đúng? 21 A. a 4 c 3. B. a 2 c 5. C. a c 1. D. 4a c 3. Câu 69. Trong không gian với hệ trục toạ độ Oxyz, cho 3 điểm A 2; 2; 3 ;B 1; 1; 3 ;C 3; 1; 1 . Điểm M P :x 2z 8 0 sao cho giá trị của biểu thức T 2MA2 MB2 3MC2 nhỏ nhất. Khi đó, điểm M cách Q : x 2y 2z 6 0 một khoảng bằng 2 4 A. . B.2.C. . D. 4. 3 3 Câu 70. Tính khoảng cách từ điểm H(3; – 1;– 6) đến mặt phẳng ( ) : x y z 1 0 . 8 3 A. . B. 9.C. 3 3. D. 3. 3 Câu 71. Tính khoảng cách giữa hai mặt phẳng song song (P): 2x y 2z 0 và (Q) 2x y 2z 7 0 . 7 7 A. . B. 7.C. . D. 2. 9 3 Câu 72. Khoảng cách từ điểm K(1;2;3) đến mặt phẳng (Oxz) bằng A. 2.B. 1.C. 3.D. 4. x 1 5t Câu 73. Tính khoảng cách giữa mặt phẳng ( ) : 2x y 2z 4 0 và đường thẳng d: y 2 2t . z 4t 8 4 A. . B. 0.C. . D. 4. 3 3 Câu 74. Khoảng cách từ giao điểm A của mặt phẳng (R) : x y z 3 0 với trục Oz đến mặt phẳng ( ) : 2x y 2z 1 0 bằng 7 5 4 A. . B. . C. . D. 0. 3 3 3 x 1 3t Câu 75. Cho hai mặt phẳng (P) : x y 2z 1 0, (Q) : 2x y z 0 và đường thẳng d: y 2 t . z 1 t Trang 30/31
  31. Gọi d(d,(P)) , d(d,(Q)) , d((P),(Q)) lần lượt là khoảng cách giữa đường thẳng d và (P), d và (Q), (P) và (Q). Trong các mệnh đề sau, tìm mệnh đề sai: 6 A. d(d,(P)) 0. B. d(d,(Q)) . C. d((P),(Q)) 0. D. d(d,(Q)) 0. 2 x 1 t Câu 76. Khoảng cách từ điểm C( 2;1;0) đến mặt phẳng (Oyz) và đến đường thẳng : y 4 t lần z 6 2t lượt là d1 và d2 . Chọn khẳng định đúng trong các khẳng định sau: B. d1 d2. B. d1 d2. C. d1 0. D. d2 =1. Câu 77. Khoảng cách từ điểm B(1;1;1) đến mặt phẳng (P) bằng 1. Chọn khẳng định đúngtrong các khẳng định sau: A. (P): 2x y – 2z 6 0. B. (P): x y z – 3 0. B. (P): 2x y 2z – 2 0. D. (P): x y z – 3 0 . Câu 78. Trong không gian Oxyz cho mặt phẳng :2x y 2z 1 0 và mặt phẳng  :2x y 2z 5 0 . Tập hợp các điểm M cách đều mặt phẳng và  là A. 2x y 2z 3 0. B. 2x y 2z 3 0. C. 2x y 2z 3 0. D. 2x y 2z 3 0. Câu 79. Trong không gian Oxyz cho mặt phẳng :x 2y 2z 1 0 và mặt phẳng  : 2x y 2z 1 0 . Tập hợp các điểm cách đều mặt phẳng và  là x y 2 0 x y 2 0 A. . B. . 3x 3y 4z 4 0 3x 3y 4z 4 0 x y 2 0 x y 2 0 C. . D. . 3x 3y 4z 4 0 3x 3y 4z 4 0 Trang 31/31