Đề thi tuyển sinh vào Khối 10 môn Toán - Năm học 2021-2022 - Sở giáo dục và đào tạo Bình Định (Có đáp án)
Bạn đang xem tài liệu "Đề thi tuyển sinh vào Khối 10 môn Toán - Năm học 2021-2022 - Sở giáo dục và đào tạo Bình Định (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_tuyen_sinh_vao_khoi_10_mon_toan_nam_hoc_2021_2022_so.docx
Nội dung text: Đề thi tuyển sinh vào Khối 10 môn Toán - Năm học 2021-2022 - Sở giáo dục và đào tạo Bình Định (Có đáp án)
- SỞ GIÁO DỤC – ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2021-2022 BèNH ĐỊNH Đề chớnh thức Mụn thi: Toỏn Ngày thi: 11/6/2021 Thời gian làm bài: 120’ Bài 1: (2 điểm). x 1 1 2 1.Cho biểu thức P : Với x>0;x 1 x 1 x 1 x 1 x 1 a) Rỳt gọn biểu thức P b) Tỡm giỏ trị của P khi x 4 2 3 x 2y 6 2. Giải hệ phương trỡnh: 2x 3y 7 Bài 2: (2 điểm) 1. Cho phương trỡnh x2-(m+3)x-2m2+3m=0 (m là tham số). Hóy tỡm giỏ trị của m để x=3 là nghiệm của PT và xỏc định nghiệm cũn lại của PT ( nếu cú) 2. Cho Parabol (P): y=x2 và đường thẳng (d) : y= (2m+1)x-2m (m là tham số). Tỡm m để đường thẳng (d) cắt (P) tại hai điểm phõn biệt A x1, y1 ; B x2 , y2 sao cho: y1+y2 - x1 x2=1 Bài 3: (2,0 điểm) Một xe mỏy khởi hành tại địa điểm A đi đến địa điểm B cỏch A 160 km, sau đú 1 giờ, một ụ tụ đi từ B đờn A. Hai xe gặp nhau tại địa điểm C cỏch B 72 km. Biết vận tốc ụ tụ lớn hơn vận tốc xe mỏy 20km/h. Tớnh vận tốc mỗi xe. Bài 4: (4,0 điểm) Cho tam giỏc ABC cú ãACB 900 nội tiếp trong đường trũn tõm O. Gọi M là trung điểm của BC, đường thảng OM cắt cung nhỏ BC tại D, cắt cung lớn BC tại E. Gọi F là chõn đường vuụng gúc hạ từ E xuống AB; H là chõn đường vuụng gúc hạ từ B xuống AE a) Chứng minh tứ giỏc BEHF nội tiếp. b) Chứng minh MF AE c) Đường thẳng MF cắt AC tại Q. Đường thẳng EC cắt AD, AB lần lượt tại I và K. Chứng minh EC EK Eã QA 900 & IC IK Bài 5 (1,0 điểm).
- 1 1 1 1 Cho a,b, c là cỏc số dương thỏa: 2.CMR : abc . 1 a 1 b 1 c 8 HƯỚNG DẪN GIẢI Bài 1: 1. a) Rỳt gển biểu thểc P : ĐK: x 0; x 1 x 1 1 2 x x x 1 x 1 2 x 1 x 1 x 1 P : : . x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 Vậy P với x 0; x 1 x 1 b) Tỡm giỏ trể cểa P khi x 4 2 3 : 2 với x 0; x 1, ta cú: x 4 2 3 3 1 3 1 3 1 x 1 4 2 3 1 5 2 3 5 3 6 P x 1 3 1 1 3 3 Vậy . x 2y 6 x 4 2. Vậy HPT cú nghiệm duy nhất 2x 3y 7 y 5 Bài 2: (2điểm) 1. Cho phương trỡnh x2-(m+3)x-2m2+3m=0 (m là tham số). Hóy tỡm giỏ trị của m để x=3 là nghiệm của PT và xỏc định nghiệm cũn lại của PT ( nếu cú). Vỡ x=3 là nghiệm của PT, nờn: 32 m 3 .3 2m2 3m 0 2m2 0 m 0 b Khi đú theo hệ thức Vi-et, ta cú: x x m 3 0 3 3 x 3 x 3 3 0 1 2 a 2 1 Vậy . 2. Cho Parabol (P): y=x2 và đường thẳng (d) : y= (2m+1)x-2m (m là tham số). Tỡm m để đường thẳng (d) cắt (P) tại hai điểm phõn biệt A x1, y1 ; B x2 , y2 sao cho: y1+y2 - x1 x2=1: Hoành độ giao điểm của (d) và (P) là nghiệm của pt: x2=(2m+1)x-2m x2- (2m+1)x+2m=0 (1)
- 2 2 2 2 2m 1 4.1.2m 1 4m 4m 8m 4m 4m 1 2m 1 0 (d) cắt (P) tại hai điểm phõn biệt A x1, y1 ; B x2 , y2 PT (1) cú 2 nghiệm phõn biệt x1 x2 2 1 0 2m 1 0 2m 1 0 m 2 b x x 2m 1 1 2 a Theo hệ thức Vi- ột, ta cú: mà y= x2, nờn: c x .x 2m 1 2 a 2 2 2 2 y1 y2 x1x2 1 x1 x2 x1x2 1 x1 x2 3x1x2 1 2m 1 3.2m 1 m 0 TM 2 4m 2m 0 2m(2m 1) 0 1 m KTM 2 Vậy m=0 thỏa món yờu cầu . Bài 3: (2,0 điểm) 160 km Gọi vận tốc của xe mỏy là x (km/h) A B ĐK: x > 0 C 72 km Vận tốc của ụ tụ là : x+20 (km/h) Quóng đường AC: 160-72=88 (km) 88 Thời gian xe mỏy đi từ A đến C là: (giờ) x 72 Thời gian ụ tụ đi từ B đến C là: (giờ) x 20 Vỡ ụ tụ khởi hành sau xe mỏy 1 giờ nờn ta cú pt: 88 72 2 x1 40(TM ) 1 x 4x 1760 0 x x 20 x2 44(KTM ) Vậy vận tốc của xe mỏy là 40 (km/h) Vận tốc của ụ tụ là : 40+20 = 60(km/h) Bài 4: (4,0 điểm) a) Chứng minh tứ giỏc BEHF nội tiếp:
- Ta cú: Bã FE 900 Vỡ EF AB ;Bã HE 900 Vỡ BH BC => Tứ giỏc BKMI nội tiếp (Tứ giỏc cú hai đỉnh kề H,F cựng nhỡn BE dưới gúc bằng nhau) C D b)Chứng minh MF AE : M Ta cú: MB=MC (gt) => EM BC Bã ME Bã FE Bã HE 900 F A 1 B 2 3 điểm M;F;H cựng nằm trờn đường trũn đường kớnh BE O =>5 điểm B;M;F;H;E cựng nằm trờn đường trũn đường kớnh BE à à H => F1 E1 ( gúc nội tiếp cựng chắn cung MB) (1) 2 1 Và Bả Eả ( gúc nội tiếp cựng chắn cung FH) (2) 2 2 E Lại cú: EM BC Cung BE= cung CAE Mã BE Fã AE ( Gúc nội tiếp chắn hai cung băng nhau) ã à 0 ã ả 0 Mà MBE E1 90 ; FAE E2 90 ( tam giỏc vuụng) à ả Suy ra: E1 E2 (3) Từ (1); (2) và (3) Suy ra: Bả Fà , mà hai gúc này ở vị trớ so le trong, nờn: MF//BH ,mà BH AE MF AE 2 1 C EC EK c) Chứng minh Eã QA 900 & D IC IK M Ta cú: ED BC Cung DB= cung DC=> àA ảA 1 I 1 2 A 2 F 1 B K 2 => AI là đường phõn giỏc trong của tam giỏc AKC Q O Mà Dã AE 900 ( Gúc nội tiếp chắn nửa đtrũn) AI AE H 2 => AE là đường phõn giỏc ngoài của tam giỏc AKC 1 Theo tớnh chất đường phõn giỏc của tam giỏc ta cú: E IC AC EC AC IC EC EC EK & hay (đ.p.c.m) IK AK EK AK IK EK IC IK Xột tam giỏc AQF cú AE là đường cao ( vỡ MF AE EQ AE ), AE cũng là đường phõn giỏc (c.m.t) do đú tam giỏc AQF cõn tại A: Xột AQE và AQF, cú: AQ=AF (Vỡ AQF cõn); Fã AE Qã AE (AE là phõn giỏc); AE chung Suy ra: AQE = AQF (c.g.c) Eã QA Eã FA 900 (đ.p.c.m)
- 1 1 1 1 Bài 5 (1,0 điểm). Cho a,b, c là cỏc số dương thỏa: 2.CMR : abc 1 a 1 b 1 c 8 Vỡ a,b, c là cỏc số dương, nờn: 1 1 1 1 1 1 b c AM GM bc 2 1 1 2 1 a 1 b 1 c 1 a 1 b 1 c 1 b 1 c 1 b 1 c 1 AM GM ca 1 AM GM ab Tương tự: 2 ; 2 1 b 1 c 1 a 1 c 1 a 1 b Nhõn vế theo vế ba BĐT trờn: 1 1 1 bc ca ab . . 8 . . 1 a 1 b 1 c 1 b 1 c 1 c 1 a 1 a 1 b 1 abc 1 8 abc 1 a 1 b 1 c 1 a 1 b 1 c 8 a b c 1 a 1 b 1 c 1 Dấu “=” xảy ra khi và chỉ khi a b c 1 2 abc 8