Đề cương ôn thi THPT môn Toán - Chủ đề Khối đa diện + Thể tích khối đa diện - Mức độ 3, 4

pdf 14 trang thienle22 10440
Bạn đang xem tài liệu "Đề cương ôn thi THPT môn Toán - Chủ đề Khối đa diện + Thể tích khối đa diện - Mức độ 3, 4", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfde_cuong_on_thi_thpt_mon_toan_chu_de_khoi_da_dien_the_tich_k.pdf

Nội dung text: Đề cương ôn thi THPT môn Toán - Chủ đề Khối đa diện + Thể tích khối đa diện - Mức độ 3, 4

  1. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 TRƯỜNG THPT HA HUY TẬP ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN CHỦ ĐỀ KHỐI ĐA DIỆN – THỂ NĂM HỌC 2019 - 2020 TÍCH KHỐI ĐA DIỆN MỨC ĐỘ 3, 4. Câu 1. Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a , SA vuông góc với đáy, SA a 2 . Một mặt phẳng đi qua A vuông góc với SC cắt SB , SD , SC lần lượt tại B , D , C . Thể tích khối chóp S . AB C D là: 2a3 3 2a3 2 a3 2 2a3 3 A. V . B. V . C. V . D. V . 9 3 9 3 Câu 2. Số mặt phẳng cách đều tất cả các đỉnh của một hình lăng trụ tam giác là A. 1. B. 2 . C. 3 . D. 4 . Câu 3. Cho khối tứ diện đều ABCD có thể tích là V . Gọi M , N , P , Q lần lượt là trung điểm của AC , AD , BD , BC . Thể tích khối chóp AMNPQ là V V V V 2 A. . B. . C. . D. . 6 3 4 3 Câu 4. Cho hình lăng trụ tam giác đều ABC. A B C có góc giữa hai mặt phẳng A BC và ABC bằng 60 , cạnh AB a . Tính thể tích V của khối lăng trụ ABC. A B C . 3 3 3 3 A. V a3 . B. V a3 . C. V a3 . D. V 3 a3 . 4 4 8 SM 1 Câu 5. Cho tứ diện SABC và hai điểm M , N lần lượt thuộc các cạnh SA , SB sao cho , AM 2 SN 2 . Mặt phẳng P đi qua hai điểm M , N và song song với cạnh SC , cắt AC , BC lần BN V lượt tại L , K . Tính tỉ số thể tích SCMNKL . VSABC V 4 V 1 V 2 V 1 A. SCMNKL . B. SCMNKL . C. SCMNKL . D. SCMNKL . VSABC 9 VSABC 3 VSABC 3 VSABC 4 Câu 6. Cho hình chóp đều S. ABC có SA 1. Gọi DE, lần lượt là trung điểm của hai cạnh SA, SC . Tính thể tích khối chóp S. ABC , biết đường thẳng BD vuông góc với đường thẳng AE . 2 21 12 21 A. V . B. V . C. V . D. V . S. ABC 12 S. ABC 54 S. ABC 4 S. ABC 18 Câu 7. Cho hình lăng trụ đứng ABC. A B C có đáy ABC là tam giác đều cạnh a . Khoảng cách từ tâm a O của tam giác ABC đến mặt phẳng A BC bằng . Thể tích khối lăng trụ bằng 6 3a3 2 3a3 2 3a3 2 3a3 2 A. . B. . C. . D. . 4 8 28 16 Câu 8. Cho hình lăng trụ đứng ABC. A B C có đáy ABC là tam giác đều cạnh a . Khoảng cách từ tâm a O của tam giác ABC đến mặt phẳng A BC bằng . Thể tích khối lăng trụ bằng 6 3a3 2 3a3 2 3a3 2 3a3 2 A. . B. . C. . D. . 4 8 28 16 1
  2. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 Câu 9. Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a và cạnh bên SA vuông góc với mặt phẳng đáy. Gọi E là trung điểm của cạnh CD . Biết thể tích của khối chóp S. ABCD bằng a3 . Tính khoảng cách từ A đến mặt phẳng SBE . 3 2a a 2 a a 3 A. . B. . C. . D. . 3 3 3 3 Câu 10. Cho khối chóp S. ABCD có đáy ABCD là tứ giác lồi, tam giác ABD đều cạnh a , tam giác BCD cân tại C và BCD 120  . SA ABCD và SA a . Mặt phẳng P đi qua A và vuông góc với SC cắt các cạnh SB , SC , SD lần lượt tại M , N , P . Tính thể tích khối chóp S. AMNP . a3 3 2a3 3 a3 3 a3 3 A. . B. . C. . D. . 42 21 14 12 Câu 11. Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a và cạnh bên SA vuông góc với mặt phẳng đáy. Gọi E là trung điểm của cạnh CD . Biết thể tích của khối chóp S. ABCD bằng a3 . Tính khoảng cách từ A đến mặt phẳng SBE . 3 2a a 2 a a 3 A. . B. . C. . D. . 3 3 3 3 Câu 12. Cho khối chóp S. ABCD có đáy ABCD là tứ giác lồi, tam giác ABD đều cạnh a , tam giác BCD cân tại C và BCD 120  . SA ABCD và SA a . Mặt phẳng P đi qua A và vuông góc với SC cắt các cạnh SB , SC , SD lần lượt tại M , N , P . Tính thể tích khối chóp S. AMNP . a3 3 2a3 3 a3 3 a3 3 A. . B. . C. . D. . 42 21 14 12 Câu 13. Cho hình chóp S. ABCD có đáy là hình bình hành. Gọi M , N , P , Q lần lượt là trọng tâm các tam giác SAB , SBC , SCD , SDA . Gọi O là điểm bất kỳ trên mặt đáy ABCD . Biết thể tích khối chóp O. MNPQ bằng V . Tính thể tích khối S. ABCD . 27 27 9 27 A. V . B. V . C. V . D. V . 8 2 4 4 Lời giải Chọn B 2
  3. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 2 2  1 2 Ta có, diện tích SSMNPQ . MNPQ . .S ABCD .S ABCD . 3 9 2 9 1 Đường cao của khối O. MNPQ là h h . O MNPQ3 S ABCD 2 27 Suy ra VVVV . 27S ABCD S ABCD 2 Câu 14. ~2Cho khối chóp tứ giác S. ABCD . Mặt phẳng đi qua trọng tâm các tam giác SAB , SAC , SAD V1 chia khối chóp này thành hai phần có thể tích là V1 và V2 VV1 2 . Tính tỉ lệ . V2 8 16 8 16 A. . B. . C. . D. . 27 81 19 75 Câu 15. Cho khối chóp tứ giác S. ABCD . Mặt phẳng đi qua trọng tâm các tam giác SAB , SAC , SAD V1 chia khối chóp này thành hai phần có thể tích là V1 và V2 VV1 2 . Tính tỉ lệ . V2 8 16 8 16 A. . B. . C. . D. . 27 81 19 75 Câu 16. Cho hình lăng trụ ABC. A B C có đáy ABC là tam giác vuông tại A . cạnh BC 2 a và ABC 60  . Biết tứ giác BCC B là hình thoi có B BC nhọn. Biết BCC B vuông góc với ABC và ABB A tạo với ABC góc 45. Thể tích của khối lăng trụ ABC. A B C bằng a3 3a3 6a3 a3 A. . B. . C. . D. . 7 7 7 3 7 Câu 17. Cho hình lăng trụ ABC. A B C có đáy ABC là tam giác vuông tại A . cạnh BC 2 a và ABC 60  . Biết tứ giác BCC B là hình thoi có B BC nhọn. Biết BCC B vuông góc với ABC và ABB A tạo với ABC góc 45. Thể tích của khối lăng trụ ABC. A B C bằng a3 3a3 6a3 a3 A. . B. . C. . D. . 7 7 7 3 7 Câu 18. Cho khối lăng trụ ABC. A B C . Gọi E là trọng tâm tam giác ABC và F là trung điểm BC . Tính tỉ số thể tích giữa khối B . EAF và khối lăng trụ ABC. A B C . 1 1 1 1 A. . B. . C. . D. . 4 8 5 6 Câu 19. Cho khối lăng trụ ABC. A B C . Gọi E là trọng tâm tam giác ABC và F là trung điểm BC . Tính tỉ số thể tích giữa khối B . EAF và khối lăng trụ ABC. A B C . 1 1 1 1 A. . B. . C. . D. . 4 8 5 6 Câu 20. Cho hình lăng trụ đứng ABC.''' A B C có đáy ABC đều cạnh bằng a và chu vi của mặt bên ABB'' A bằng 6a . Thể tích của khối lăng trụ ABC.''' A B C bằng a3 3 a3 3 a3 3 A. . B. a3 3 . C. . D. . 2 3 6 Câu 21. Cho hình lăng trụ đứng ABC.''' A B C có đáy ABC đều cạnh bằng a và chu vi của mặt bên ABB'' A bằng 6a . Thể tích của khối lăng trụ ABC.''' A B C bằng a3 3 a3 3 a3 3 A. . B. a3 3 . C. . D. . 2 3 6 3
  4. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 Câu 22. Cho hình chóp S. ABC có đường cao SA 2 a , tam giác ABC vuông tại C , AB 2 a , CAB 30  . Gọi H là hình chiếu của A trên SC , B là điểm đối xứng của B qua mặt phẳng SAC . Thể tích của khối chóp H. AB B bằng a3 3 6a3 3 4a3 3 2a3 3 A. . B. . C. . D. . 7 7 7 7 Câu 23. Cho hình chóp S. ABC có đường cao SA 2 a , tam giác ABC vuông tại C , AB 2 a , CAB 30  . Gọi H là hình chiếu của A trên SC , B là điểm đối xứng của B qua mặt phẳng SAC . Thể tích của khối chóp H. AB B bằng a3 3 6a3 3 4a3 3 2a3 3 A. . B. . C. . D. . 7 7 7 7 Câu 24. Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a , cạnh bên SA 2 a và vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh SD . Tang của góc tạo bởi hai mặt phẳng AMC và SBC bằng S 5 3 A. . B. . M 5 2 A D 2 5 2 3 C. . D. . 5 3 B C Câu 25. Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a , cạnh bên SA 2 a và vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh SD . Tang của góc tạo bởi hai mặt phẳng AMC và SBC bằng S M A D B C 5 3 A. . B. . 5 2 2 5 2 3 C. . D. . 5 3 Câu 26. Cho tứ diện ABCD có BC 3, CD 4 , BCD ABC ADC 90  . Góc giữa hai đường thẳng AD và BC bằng 60 . Tính thể tích khối cầu ngoại tiếp tứ diện ABCD . 127 127 52 13 28 7 A. . B. . C. . D. 32 3 . 6 3 3 Câu 27. Cho lăng trụ đều ABC. EFH có tất cả các cạnh bằng a . Gọi S là điểm đối xứng của A qua BH . Thể tích khối đa diện ABCSFH bằng 3a3 a3 3a3 a3 A. . B. . C. . D. . 3 6 6 2 Câu 28. Cho tứ diện ABCD có BC 3, CD 4 , BCD ABC ADC 90  . Góc giữa hai đường thẳng AD và BC bằng 60 . Tính thể tích khối cầu ngoại tiếp tứ diện ABCD . 127 127 52 13 28 7 A. . B. . C. . D. 32 3 . 6 3 3 4
  5. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 Câu 29. Cho lăng trụ đều ABC. EFH có tất cả các cạnh bằng a . Gọi S là điểm đối xứng của A qua BH . Thể tích khối đa diện ABCSFH bằng 3a3 a3 3a3 a3 A. . B. . C. . D. . 3 6 6 2 Câu 30. Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, tam giác SAD vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Cho biết AB a , SA 2 SD . Mặt phẳng SBC tạo với đáy một góc 60o . Thể tích khối chóp S. ABCD là 3a3 5a3 15a3 A. . B. . C. 5a3 . D. . 2 2 2 Câu 31. Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, tam giác SAD vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Cho biết AB a , SA 2 SD . Mặt phẳng SBC tạo với đáy một góc 60o . Thể tích khối chóp S. ABCD là 3a3 5a3 15a3 A. . B. . C. 5a3 . D. . 2 2 2 Câu 32. Cho hình lăng trụ đứng ABC. A1 B 1 C 1 có đáy ABC là tam giác vuông tại B , AB 4 , BC 6 ; chiều cao của lăng trụ bằng 10. Gọi K , M , N lần lượt là trung điểm của các cạnh BB1 , AB1 1 , BC . Thể tích khối tứ diện C1 KMN . A. 15. B. 45 . C. 5 . D. 10. Câu 33. Ba quả bóng dạng hình cầu có bán kính có bán kính bằng 1 đôi một tiếp xúc nhau và cùng tiếp xúc với mặt phẳng P . Mặt cầu S bán kính bằng 2 tiếp xúc với ba quả bóng trên. Gọi M là điểm bất kỳ trên S , MH là khoảng cách từ M đến mặt phẳng P . Giá trị lớn nhất của MH là 123 52 30 69 A. 3 . B. . C. 3 . D. 3 . 4 9 2 3 Câu 34. Cho hình lăng trụ đứng ABC. A1 B 1 C 1 có đáy ABC là tam giác vuông tại B , AB 4 , BC 6 ; chiều cao của lăng trụ bằng 10 . Gọi K , M , N lần lượt là trung điểm của các cạnh BB1 , AB1 1 , BC . Thể tích khối tứ diện C1 KMN . A. 15 . B. 45 . C. 5 . D. 10 . Câu 35. Ba quả bóng dạng hình cầu có bán kính bằng 1 đôi một tiếp xúc nhau và cùng tiếp xúc với mặt phẳng P . Mặt cầu S bán kính bằng 2 tiếp xúc với ba quả bóng trên. Gọi M là điểm bất kỳ trên S , MH là khoảng cách từ M đến mặt phẳng P . Giá trị lớn nhất của MH là 123 52 30 69 A. 3 . B. . C. 3 . D. 3 . 4 9 2 3 ~1 5
  6. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 Lời giải Chọn D Coi tâm quả ba quả cầu nhỏ là A , B , C và tâm của quả cầu lớn bên trên là S . Ta được chóp đều S. ABC có cạnh đáy là 2 và cạnh bên là 3 . Gọi O là chân dường cao của chóp S. ABC . Suy ra MH lớn nhất khi M , S , O , H thẳng hàng. MHmax 2 SO 1 3 SO . 2 2 2 2 2 69 Ta có: SO SA AO 3 . 3 . 3 3 69 Suy ra: MH 3 SO 3 . max 3 Câu 36. ~2Cho hình chóp đều S. ABC có góc giữa mặt bên và mặt phẳng đáy ABC bằng 60 . Khoảng 6 7 cách giữa hai đường thẳng SA và BC bằng . Thể tích V của khối chóp S. ABC bằng 7 8 3 5 7 10 7 5 3 A. V . B. V . C. V . D. V . 3 3 3 2 Câu 37. Cho hình chóp đều S. ABC có góc giữa mặt bên và mặt phẳng đáy ABC bằng 60 . Khoảng 6 7 cách giữa hai đường thẳng SA và BC bằng . Thể tích V của khối chóp S. ABC bằng 7 8 3 5 7 10 7 5 3 A. V . B. V . C. V . D. V . 3 3 3 2 Câu 38. Chọn ngẫu nhiên 3 đường thẳng chứa 3 cạnh khác nhau của một hình bát diện đều. Tìm xác suất để các véc tơ chỉ phương của 3 đường thẳng đó đồng phẳng. 23 7 1 17 A. . B. . C. . D. . 55 11 5 55 Câu 39. Chọn ngẫu nhiên 3 đường thẳng chứa 3 cạnh khác nhau của một hình bát diện đều. Tìm xác suất để các véc tơ chỉ phương của 3 đường thẳng đó đồng phẳng. 23 7 1 17 A. . B. . C. . D. . 55 11 5 55 Câu 40. Một hình đa diện có các mặt là các tam giác có số mặt M và số cạnh C của đa diện đó thỏa mãn hệ thức nào dưới đây A. 3CM 2 . B. CM 2 . C. 3MC 2 . D. 2CM . 6
  7. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 Câu 41. Cho hình lăng trụ đứng ABC. A B C có đáy ABC là tam giác vuông cân tại A , cạnh BC a 6 . Góc giữa mặt phẳng AB C và mặt phẳng BCC B bằng 60 . Tính thể tích khối đa diện AB CA C . 3 3a3 a3 3 a3 3 A. a3 3 . B. . C. . D. . 2 2 3 Câu 42. Một hình đa diện có các mặt là các tam giác có số mặt M và số cạnh C của đa diện đó thỏa mãn hệ thức nào dưới đây A. 3CM 2 . B. CM 2 . C. 3MC 2 . D. 2CM . Câu 43. Cho hình lăng trụ đứng ABC. A B C có đáy ABC là tam giác vuông cân tại A , cạnh BC a 6 . Góc giữa mặt phẳng AB C và mặt phẳng BCC B bằng 60 . Tính thể tích khối đa diện AB CA C . 3 3a3 a3 3 a3 3 A. a3 3 . B. . C. . D. . 2 2 3 Câu 44. Cho hình chóp đều S. ABCD có tất cả các cạnh đều bằng a . Gọi là góc giữa hai mặt phẳng SBD và SCD . Mệnh đề nào sau đây đúng? 2 3 A. tan 6 . B. tan . C. tan . D. tan 2 . 2 2 Câu 45. Cho hình chóp đều S . ABCD có tất cả các cạnh đều bằng a . Gọi là góc giữa hai mặt phẳng SBD và SCD . Mệnh đề nào sau đây đúng? 2 3 A. tan 6 . B. tan . C. tan . D. tan 2 . 2 2 Câu 46. Cho hình chóp S. ABCD có đáy là hình bình hành. Gọi M , N và P lần lượt là trung điểm của các đoạn BC , CD và SA . Mặt phẳng MNP chia khối chóp thành hai phần có thể tích lần lượt V1 là V1 và V2 . Biết rằng VV1 2 , tính tỉ số . V2 1 5 2 A. 1. B. . C. . D. . 2 6 3 Câu 47. Cho hình chóp S. ABCD có đáy là hình bình hành. Gọi M , N và P lần lượt là trung điểm của các đoạn BC , CD và SA . Mặt phẳng MNP chia khối chóp thành hai phần có thể tích lần lượt V1 là V1 và V2 . Biết rằng VV1 2 , tính tỉ số . V2 1 5 2 A. 1. B. . C. . D. . 2 6 3 Câu 48. Cho hình lăng trụ ABCD. A B C D có đáy là hình vuông. Hình chiếu vuông góc của A lên mặt phẳng ABCD là trung điểm AB , góc giữa mp A CD và mặt phẳng ABCD là 60 . Thể 8 3a3 tích của khối chóp B ABCD là . Tính theo a độ dài đoạn thẳng AC . 3 A. 2a 3 2 . B. 2a . C. 2a . D. 2 2a . Câu 49. Cho hình lăng trụ ABCD. A B C D có đáy là hình vuông. Hình chiếu vuông góc của A lên mặt phẳng ABCD là trung điểm AB , góc giữa mp A CD và mặt phẳng ABCD là 60 . Thể 8 3a3 tích của khối chóp B ABCD là . Tính theo a độ dài đoạn thẳng AC . 3 7
  8. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 A. 2a 3 2 . B. 2a . C. 2a . D. 2 2a . Câu 50. Cho tứ diện ABCD có AB CD 4 , AC BD 5 , AD BC 6 . Tính khoảng cách từ đỉnh A đến mặt phẳng BCD . 3 6 3 2 3 42 7 A. . B. . C. . D. . 7 5 7 2 Câu 51. Cho hình chóp S. ABCD có ABCD là hình chữ nhật SA 12 a , SA ABCD và AB 3 a , AD 4 a . Tính bán kính mặt cầu ngoại tiếp hình chóp S. ABCD . A. R 6,5 a . B. R 13 a . C. R 12 a . D. R 6 a . Câu 52. Cho tứ diện ABCD có AB CD 4 , AC BD 5 , AD BC 6 . Tính khoảng cách từ đỉnh A đến mặt phẳng BCD . 3 6 3 2 3 42 7 A. . B. . C. . D. . 7 5 7 2 Câu 53. Cho hình chóp S. ABCD có ABCD là hình chữ nhật SA 12 a , SA ABCD và AB 3 a , AD 4 a . Tính bán kính mặt cầu ngoại tiếp hình chóp S. ABCD . A. R 6,5 a . B. R 13 a . C. R 12 a . D. R 6 a . Câu 54. Cho hình chóp S. ABC , có đáy ABC là tam giác đều cạnh a . Các mặt bên SAB , SAC , SBC lần lượt tạo với đáy các góc lần lượt là 30o , 45o , 60o . Tính thể tích V của khối chóp S. ABC . Biết rằng hình chiếu vuông góc của S trên mặt phẳng ABC nằm bên trong tam giác ABC . S A C H N a M B a3 3 a3 3 a3 3 a3 3 A. V . B. V . C. V . D. V . 8 4 3 2 4 3 4 4 3 4 3 Câu 55. Cho hình chóp S. ABC , có đáy ABC là tam giác đều cạnh a . Các mặt bên SAB , SAC , SBC lần lượt tạo với đáy các góc lần lượt là 30o , 45o , 60o . Tính thể tích V của khối chóp S. ABC . Biết rằng hình chiếu vuông góc của S trên mặt phẳng ABC nằm bên trong tam giác ABC . 8
  9. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 S A C H N a M B a3 3 a3 3 a3 3 a3 3 A. V . B. V . C. V . D. V . 8 4 3 2 4 3 4 4 3 4 3 Câu 56. Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật với cạnh AD 2 CD . Biết hai mặt phẳng SAC , SBD cùng vuông góc với mặt đáy và đoạn BD 6 ; góc giữa SCD và mặt đáy bằng 60 . Hai điểm MN, lần lượt là trung điểm của SA, SB . Thể tích khối đa diện ABCDMN bằng 128 15 16 15 18 15 108 15 A. . B. . C. . D. . 15 15 5 25 Câu 57. Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật với cạnh AD 2 CD . Biết hai mặt phẳng SAC , SBD cùng vuông góc với mặt đáy và đoạn BD 6 ; góc giữa SCD và mặt đáy bằng 60 . Hai điểm MN, lần lượt là trung điểm của SA, SB . Thể tích khối đa diện ABCDMN bằng 128 15 16 15 18 15 108 15 A. . B. . C. . D. . 15 15 5 25 Câu 58. Cho hình lăng trụ ABCD. A B C D có đáy là hình thoi cạnh bằng a và ABC 120 . Góc giữa cạnh bên AA và mặt đáy bằng 60 , điểm A cách đều các điểm A , B , D . Tính thể tích khối lăng trụ đã cho theo a . a3 3 a3 3 a3 3 a3 3 A. . B. . C. . D. . 3 2 12 6 Câu 59. Cho hình lăng trụ ABCD. A B C D có đáy là hình thoi cạnh bằng a và ABC 120 . Góc giữa cạnh bên AA và mặt đáy bằng 60 , điểm A cách đều các điểm A , B , D . Tính thể tích khối lăng trụ đã cho theo a . a3 3 a3 3 a3 3 a3 3 A. . B. . C. . D. . 3 2 12 6 Câu 60. Cho hình chóp đều S. ABC có SA 2cm và cạnh đáy bằng 1cm . Gọi M là một điểm thuộc  2  miền trong của hình chóp này sao cho SM SG , với G là tâm đường tròn nội tiếp tam giác 3 ABC . Gọi a , b , c lần lượt là khoảng cách từ M đến các mặt phẳng SAB , SAC , SBC . Tính giá trị của biểu thức P a b c . 165 7 165 2 165 2 165 A. P . B. P . C. P . D. P . 45 45 135 45 Câu 61. Cho hình chóp đều S. ABC có SA 2cm và cạnh đáy bằng 1cm . Gọi M là một điểm thuộc  2  miền trong của hình chóp này sao cho SM SG , với G là tâm đường tròn nội tiếp tam giác 3 ABC . Gọi a , b , c lần lượt là khoảng cách từ M đến các mặt phẳng SAB , SAC , SBC . Tính giá trị của biểu thức P a b c . 9
  10. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 165 7 165 2 165 2 165 A. P . B. P . C. P . D. P . 45 45 135 45 Câu 62. Cho lăng trụ ABC. A B C có đáy là tam giác đều cạnh a . Hình chiếu vuông góc của điểm A lên mặt phẳng ABC trùng với trọng tâm tam giác ABC . Biết khoảng cách giữa hai đường a 3 thẳng AA và BC bằng . Khi đó thể tích của khối lăng trụ là 4 a3 3 a3 3 a3 3 a3 3 A. . B. . C. . D. . 12 3 24 6 Câu 63. Cho lăng trụ ABC. A B C có đáy là tam giác đều cạnh a . Hình chiếu vuông góc của điểm A lên mặt phẳng ABC trùng với trọng tâm tam giác ABC . Biết khoảng cách giữa hai đường a 3 thẳng AA và BC bằng . Khi đó thể tích của khối lăng trụ là 4 a3 3 a3 3 a3 3 a3 3 A. . B. . C. . D. . 12 3 24 6 Câu 64. Cho tứ diện ABCD có thể tích V , hai điểm M , P lần lượt là trung điểm AB , CD , điểm N thuộc đoạn AD sao cho DA 3 NA . Tính VBMNP . V V V V A. . B. . C. . D. . 16 12 4 6 Câu 65. Cho tứ diện ABCD có thể tích V , hai điểm M , P lần lượt là trung điểm AB , CD , điểm N thuộc đoạn AD sao cho DA 3 NA . Tính VBMNP . V V V V A. . B. . C. . D. . 16 12 4 6 Câu 66. Người ta dựng trên mặt đất bằng phẳng một chiếc lều từ một tấm bạt hình chữ nhật có chiều dài 12m và chiều rộng 6m bằng cách: Gập đôi tấm bạt lại theo đoạn nối trung điểm hai cạnh là chiều rộng của tấm bạt sao cho hai mép chiều dài còn lại của tấm bạt sát đất và cách nhau x m . Tìm x để không gian phía trong lều lớn nhất. A. x 3 3 . B. x 3 . C. x 4 . D. x 3 2 . Câu 67. Người ta dựng trên mặt đất bằng phẳng một chiếc lều từ một tấm bạt hình chữ nhật có chiều dài 12m và chiều rộng 6m bằng cách: Gập đôi tấm bạt lại theo đoạn nối trung điểm hai cạnh là chiều rộng của tấm bạt sao cho hai mép chiều dài còn lại của tấm bạt sát đất và cách nhau x m . Tìm x để không gian phía trong lều lớn nhất. A. x 3 3 . B. x 3 . C. x 4 . D. x 3 2 . Câu 68. Cho hình chóp S. ABC , có các cạnh bên SA , SB , SC tạo với đáy các góc bằng nhau và đều bằng 30 . Biết AB 5 , AC 7 , BC 8 , tính khoảng cách d từ A đến mặt phẳng SBC . 35 13 35 39 35 39 35 13 A. d . B. d . C. d . D. d . 52 13 52 26 Câu 69. Cho hình chóp S. ABC , có các cạnh bên SA , SB , SC tạo với đáy các góc bằng nhau và đều bằng 30 . Biết AB 5 , AC 7 , BC 8, tính khoảng cách d từ A đến mặt phẳng SBC . 35 13 35 39 35 39 35 13 A. d . B. d . C. d . D. d . 52 13 52 26 Câu 70. Cho hình chóp tam giác đều S. ABC có cạnh đáy bằng 1, góc giữa cạnh bên và mặt đáy bằng 60 . Gọi ABC , , lần lượt là các điểm đối xứng của ABC, , qua S . Thể tích của khối đa diện ABCA B C bằng 10
  11. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 2 3 4 3 3 A. V . B. V 2 3. C. V . D. V . 3 3 2 Câu 71. Cho hình chóp tam giác đều S. ABC có cạnh đáy bằng 1, góc giữa cạnh bên và mặt đáy bằng 60 . Gọi ABC , , lần lượt là các điểm đối xứng của ABC, , qua S . Thể tích của khối đa diện ABCA B C bằng 2 3 4 3 3 A. V . B. V 2 3. C. V . D. V . 3 3 2 Câu 72. Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi M , N lần lượt là trung điểm của các cạnh AB , BC . Điểm I thuộc đoạn SA . Biết mặt phẳng MNI chia khối chọp 7 S. ABCD thành hai phần, phần chứa đỉnh S có thể tích bằng lần phần còn lại. Tính tỉ số 13 IA k ? IS 3 1 1 2 A. . B. . C. . D. . 4 2 3 3 Câu 73. Cho hình chóp S. ABCD có đáy là hình bình hành và có thể tích là V . Điểm P là trung điểm của SC . Một mặt phẳng qua AP cắt hai cạnh SB và SD lần lượt tại M và N . Gọi V1 là thể V tích của khối chóp S. AMPN . Tìm giá trị nhỏ nhất của 1 . V 1 1 2 3 A. . B. . C. . D. . 3 8 3 8 Câu 74. Cho tam giác nhọn ABC , biết rằng khi quay tam giác này quanh các cạnh AB , BC , CA ta lần 3136 9408 lượt được các hình tròn xoay có thể tích là 672 , , .Tính diện tích tam giác ABC 5 13 . A. S 1979 . B. S 364 . C. S 84. D. S 96 . Câu 75. Cho tứ diện đều ABCD có cạnh bằng a . Gọi M , N lần lượt là trung điểm của các cạnh AB , BC và E là điểm đối xứng với B qua D . Mặt phẳng MNE chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V . Tính V . 11 2a3 7 2a3 2a3 13 2a3 A. . B. . C. . D. 216 216 18 216 Câu 76. Cho hình đa diện như hình vẽ S D B C A Biết SA 6 , SB 3 , SC 4 , SD 2 và ASB BSC CSD DSA BSD 60 . Thể tích khối đa diện S. ABCD là A. 6 2 . B. 5 2 . C. 30 2 . D. 10 2 . 11
  12. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 Câu 77. Cho hình thập nhị diện đều (tham khảo hình vẽ bên). Côsin của góc tạo bởi hai mặt phẳng có chung một cạnh của thập nhị diện đều bằng 5 1 5 1 1 1 A. . B. . C. . D. . 2 4 5 2 Câu 78. Cho hình chóp SABCD có đáy là hình chữ nhật, AB a , SA ABCD , cạnh bên SC tạo với 3 ABCD một góc 60 và tạo với SAB một góc thỏa mãn sin . Thể tích của khối 4 chóp SABCD bằng 2 3a3 2a3 A. 3a3 . B. . C. 2a3 . D. . 4 3 Câu 79. Cho tứ diện ABCD có các cạnh AD BC 3 ; AC BD 4; AB CD 2 3 . Thể tích tứ diện ABCD bằng 2047 2470 2474 2740 A. . B. . C. . D. . 12 12 12 12 Câu 80. Trong không gian, cho bốn mặt cầu có bán kính lần lượt là 2 ,3 ,3 , 2 (đơn vị độ dài) tiếp xúc ngoài với nhau. Mặt cầu nhỏ nhất tiếp xúc ngoài với cả bốn mặt cầu nói trên có bán kính bằng 5 3 7 6 A. . B. . C. . D. . 9 7 15 11 Câu 81. Một khối lập phương lớn tạo bởi 27 khối lập phương đơn vị. Một mặt phẳng vuông góc với đường chéo của khối lập phương lớn tại trung điểm của nó. Mặt phẳng này cắt ngang (không đi qua đỉnh) bao nhiêu khối lập phương đơn vị? A. 16 . B. 17 . C. 18 . D. 19 . Câu 82. Cho hình lăng trụ đều ABC. A B C có cạnh đáy bằng a . Gọi M , N là hai điểm thỏa mãn     MB 2 MB 0 ; NB 3 NC . Biết hai mặt phẳng MCA và NAB vuông góc với nhau. Tính thể tích của hình lăng trụ. 9a3 2 9a3 2 3a3 2 3a3 2 A. . B. . C. . D. . 8 16 16 8 Câu 83. Cho hình lăng trụ đứng ABC. A B C có đáy ABC là tam giác vuông, AB BC a . Biết rằng góc giữa hai mặt phẳng ACC và AB C bằng 60 . Tính thể tích khối chóp B . ACC A . A C B A C B 12
  13. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 a3 a3 a3 a3 3 A. . B. . C. . D. . 3 6 2 3 Câu 84. Cho x , y là các số thực dương thay đổi. Xét hình chóp S. ABC có SA x , BC y , các cạnh còn lại đều bằng 1. Khi thể tích khối chóp S. ABC đạt giá trị lớn nhất thì tích x. y bằng 3 4 3 1 A. . B. . C. 2 3 . D. . 4 3 3 Câu 85. HẾT Cho hình lăng trụ ABC. A B C . Gọi M , N , P lần lượt là các điểm thuộc các cạnh AA , BB , CC sao cho AM 2 MA , NB 2 NB , PC PC . Gọi V1 , V2 lần lượt là V thể tích của hai khối đa diện ABCMNP và A B C MNP . Tính tỉ số 1 . V2 V V 1 V V 2 A. 1 2 . B. 1 . C. 1 1. D. 1 . V2 V2 2 V2 V2 3 Câu 86. Cho hình lăng trụ ABC. A B C . Gọi M , N , P lần lượt là các điểm thuộc các cạnh AA , BB , CC sao cho AM 2 MA , NB 2 NB , PC PC . Gọi V1 , V2 lần lượt là thể tích của hai khối V đa diện ABCMNP và A B C MNP . Tính tỉ số 1 . V2 V V 1 V V 2 A. 1 2 . B. 1 . C. 1 1. D. 1 . V2 V2 2 V2 V2 3 Câu 87. Cho tứ diện đều ABCD có cạnh bằng a . Gọi M , N lần lượt là trọng tâm của các tam giác ABD , ABC và E là điểm đối xứng với B qua D . Mặt phẳng MNE chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V . Tính V . 9 2a3 3 2a3 a3 2 3 2a3 A. V . B. V . C. V . D. V . 320 320 96 80 Câu 88. Cho tứ diện đều ABCD có cạnh bằng 1. Trên các cạnh AB và CD lần lượt lấy các điểm M và     N sao cho MA MB 0 và NC 2 ND . Mặt phẳng P chứa MN và song song với AC chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích là V . Tính V . 2 11 2 7 2 2 A. V . B. V . C. V . D. V . 18 216 216 108 Câu 89. Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a , mặt bên SAB là tam giác đều, mặt bên SCD là tam giác vuông cân tại S . Gọi M là điểm thuộc đường thẳng CD sao cho BM vuông góc với SA . Tính thể tích V của khối chóp S. BDM . a3 3 a3 3 a3 3 a3 3 A. V . B. V . C. V . D. V .^pCâu 16 24 32 48 1C 2D 3C 4C 5A 6B 7D 8D 9A 10 11 12 13 14 15 A A A B C C 16_ 17 18 19 20 21 22_ 23 24_ 25 26_ 27_ 28 29 30 B D D A A D C B A B 31 32 33 34 35 36 37 38 39 40_ 41_ 42 43 44_ 45_ B A D A D A A A A C A 46_ 47 48_ 49 50 51 52 53 54 55 56_ 57 58_ 59 60_ A D A A C A A A C B 61 62 63 64 65 66_ 67 68_ 69 70 71 72 73 74 75 D A A A A D C A A D A C A 13
  14. ĐỀ CƯƠNG ÔN THI THPTQG MÔN TOÁN - NĂM HỌC 2019 - 2020 76 77 78 79 80 81 82 83 84 85_ 86 87 88 89 B C C B D D B A A C A B D 14