Tài liệu ôn thi học sinh giỏi Toán Lớp 11 - Bài tập giới hạn dãy số: Tính giới hạn bằng định nghĩa - Ngô Tùng Hiếu
Bạn đang xem 20 trang mẫu của tài liệu "Tài liệu ôn thi học sinh giỏi Toán Lớp 11 - Bài tập giới hạn dãy số: Tính giới hạn bằng định nghĩa - Ngô Tùng Hiếu", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- tai_lieu_on_thi_hoc_sinh_gioi_toan_lop_11_bai_tap_gioi_han_d.docx
Nội dung text: Tài liệu ôn thi học sinh giỏi Toán Lớp 11 - Bài tập giới hạn dãy số: Tính giới hạn bằng định nghĩa - Ngô Tùng Hiếu
- 3.1. TÍNH GIỚI HẠN BẰNG ĐỊNH NGHĨA. 1 a1 a a Bài 1. Cho dãy số an xác định bởi : 3 2 . Chứng minh rằng với mọi số thực a 0 2a 2a 2 n n an 1 2 3an 4an 1 thì dãy an hội tụ. Tùy theo a , hãy tìm giới hạn của dãy an . Hướng dẫn giải 1 Nếu a 0 thì a 2 (do bất đẳng thức AM-GM). a 1 1 Nếu a 0 thì a 2 (do bất đẳng thức AM-GM) nên a 2. a a * Nếu a 1 thì a1 2 . Ta chứng minh: an 2, n ¥ . Hiển nhiên a1 2 . 2.23 2.22 2 Giả sử a 2 a 2 . k k 1 3.22 4.2 1 Vậy lim an lim 2 2 . a 0 * . Nếu thì a1 2 . Ta chứng minh an 2 n ¥ . a 1 Rõ ràng a1 2 . . Giả sử ak 2 . Ta chứng minh ak 1 2 . 3 2 2ak 2ak 2 2 ak 1 2 2 2 2ak ak 2 0 ( đúng). 3ak 4ak 1 Ta chứng minh an là dãy giảm, thật vậy :. 3 2 a 2 1 a 2 an 2an an 2 n n n, an 1 an 2 2 0 . 3an 4an 1 3an 4an 1 ( do tử âm, mẫu dương vì. 2 7 an 2 3 3an 4an 1 0 . 2 7 a n 3 2 7 Mà a 2 3a 2 4a 1 0 ). n 3 n n an giảm và bị chặn dưới an có giới hạn là L .
- 3 2 3 2 2an 2an 2 2L 2L 2 lim an 1 lim 2 2 3an 4an 1 3L 4L 1 . L 2 an 2 L 1 Vậy lim an 2 . . Nếu a 0 thì a1 2 . Tương tự, ta có:. 3 2 a 2 1 a 2 an 2an an 2 n n n, an 1 an 2 2 0 . 3an 4an 1 3an 4an 1 nên an tăng. Hơn nữa an bị chặn trên bởi 1, thật vậy. 3 2 2ak 2ak 2 2 ak 1 1 2 1 ak 1 (2a 3) 0 . 3ak 4ak 1 Vậy an tăng và bị chặn trên an có giới hạn là L . an 1,n , an 1 an 0,n 2L3 2L2 2 . L L 1 a 1 L 2 3L2 4L 1 n Vậy lim an 1. Tóm lại: + Nếu a 1 thì lim an 2 . a 0 + Nếu thì lim an 2 . a 1 + Nếu a 0 thì lim an 1. x1 0 Bài 2. Cho dãy số xn được xác định bởi 1 2 3 2015 * . Tìm giới hạn x x L n ¥ n 1 n 2 3 2015 xn xn xn xn của dãy nxn khi n , với là số thực cho trước. Hướng dẫn giải Dễ dàng chứng minh được xn 0,n 1 bằng qui nạp. Ta có. 2 1 2 1 2 1 2 xn 1 xn , n 1 xn 1 xn xn 2 2 xn 2 ; n 1. xn xn xn 2 2 2 2 Bởi vậy n N, n 2 thì xn xn 1 2 xn 2 4 x1 2 n 1 . xn 1, n 2 và lim xn . n * 1 2 3 2015 Với n N , đặt xn 1 xn tn trong đó tn 2 3 2015 . xn xn xn xn
- t xn 1; n 2 0 tn 2 , với t 2 3 2014 2015 (1), suy ra. xn 2 2 2 1 2 1 2 2tn xn 1 xn xn tn xn 2 tn 2 2xntn 2 . khi n . xn xn xn 2 b1 x1 Áp dụng định lý trung bình Cesaro cho dãy bn với 2 2 . bn xn xn 1, n 2. b1 b2 bn ta có lim bn 2 suy ra lim limbn 2 n n n n 2 2 2 2 2 2 2 2 x xn xn 1 xn 1 xn 2 x2 x1 x1 b b b n 1 Mà n 1 2 n suy ra lim . . n 2 n n n xn 2 n 1 Thật vậy ta có thể chứng minh trực tiếp lim như sau (chứng minh định lý trung bình Cesaro). n 2 xn 2 2 2 2 Xét dãy cn : c1 x1 2; cn xn xn 1 2 với n 2,3. * lim cn 0 nên 0 tồn tại m N sao cho cn , n m. . n 2 Gọi M max ci với 1 i m 1. 2 m 1 M 2 m 1 M m 1 M Với ở trên tồn tại m 1 thì m' hay . m 2 Xét n max m,m'. ta có. n n m 1 n m 1 | ci | ci | ci | m 1 M m 1 M i 1 i m i 1 2 . o đó theo định n n n n n 2 m 2 2 n | c | nghĩa lim i 1 i 0 . n n 2 2 2 2 2 2 2 2 x xn xn 1 xn 1 xn 2 x2 x1 x1 c c c n 1 n 1 2 n 2 . suy ra lim . . n 2 n n n xn 2 1 Nếu 2 thì n.x n.x 2 khi n . n n 2 2 2 Nếu 2 thì n.xn xn .n.xn khi n . 2 2 Nếu 2 thì n.xn xn .n.xn 0 khi n . Cho hai số a ,b với 0 b 1.Lập hai dãy số a , b với n 1,2, Theo quy tắc sau: Bài 3. 1 1 1 a1 n n 1 giải nghĩa cái đó là:. an 1 (an bn ) ,bn 1 an 1.bn Tính: lim an và limbn . 2 . n n Hướng dẫn giải
- Tính a ,b với 0 b a 1ta có thể chọn 0 a sao cho: b cosa ,. 2 2 1 1 2 1 2 Suy ra a1 cos a . 1 1 a a (cos2 a cos a) cos a(cos a 1) cosa.cos2 . 2 2 2 2 a a b cos a.cos2 .cos a cos a.cos . 2 2 2 Bằng quy nạp, chứng minh được:. a a a a a a cos a.cos cos cos (1) b cos a.cos cos (2) . n 2 2n 1 2n 1 n 2 2n 1 a Nhân hai vế của (1) và (2) cho sin và áp dụng công thức sin 2a được:. 2n 1 a sin 2a.cos n 1 sin 2a a 2 , b . n a n a 2n.sin 2n.sin 2n 1 2n 1 Tính giới hạn:. sin 2a sin 2a lim an , limbn . n 2a n 2a 1 an Bài 4. Cho dãy số an ,a1 1 và an 1 an .Chứng minh: lim 2 . n an n Hướng dẫn giải 1 n n 1 n 1 1 a2 a2 2 a2 a2 2(n 1). k 1 k 2 i j 2 . ak i 2 j 1 j 1 a j n 1 1 a2 2n 1 . n 2 Vậy an 2n 1 , n 2 j 1 a j 2 1 1 1 1 1 1 1 ak 2k 1 k 2 4 2 2 . a k (2k-1) (2k-1) 1 4k(k+1) 4 k 1 k n 1 1 1 1 1 n 1 1 1 5 (1 ) 1 Suyra: 4 4 . k 2 ak 4 n 1 4 j 1 a j 4 4 n 1 1 n 1 1 5 Suyra: (n 1) (n 1) (n 2) 2 4 j 1 a j j 1 a j 4 5(n 1) Vậy: a2 2n 1 (n 2) . n 2 5(n-1) 1 a 5(n-1) Suyra: n 2; 2n-1<a < 2n-1+ 2- < n 2n-1+ . n 2 n n 2
- a Dođó: lim n 2 . n n Bài 5. Cho hai số a ,b với a cos2 , b cos . Lập hai dãy số a , b với n 1,2, theo quy 1 1 1 8 1 8 n n 1 tắc sau:. an 1 (an bn ) ,bn 1 an 1.bn . Tính: lim an và limbn . 2 n n Hướng dẫn giải +Tính a2 ,b2 :. 1 1 a (cos2 cos ) cos (cos x 1) cos .cos2 . 2 2 8 8 2 8 8 8 16 b cos cos2 cos cos cos . 2 8 16 8 8 16 + Bằng quy nạp, chứng minh được:. a cos cos cos cos (1) b cos cos cos (2) . n 2.4 22.4 2n .4 2n.4 n 2.4 22.4 2n .4 +Nhân hai vế của (1) và (2) chosin và áp dụng công thức sin 2a được:. 2n .4 sin .cos n sin a 4 2 .4 , b 4 . n n 2n.sin 2n.sin 2n .4 2n .4 +Tính giới hạn:. 4sin 4sin 4 4 lim an , limbn . n n Bài 6. Cho dãy số un biết:. u1 1 * u ,n N . u n n 1 2 1 un Hãy tính lim (un n) . n Hướng dẫn giải * Ta có:u1 0 un 0 ,n N . 2 3 2 * un 1 un un / (1 un ) un ( un ) / (1 un ) 0 n N . un là dãy số giảm và bị chặn dưới bởi 0 . lim un a (a R,a 0) n .
- 2 Từ un 1 un / (1 un ), cho n ta được:. 3 a a / (1 a ) a 0. Vậy lim un 0 . x 2 2 * Đặt vn 1/ (un 1) 1/ (un ), n N . 2 2 2 2 Ta có vn ((1 un ) / un ) 1/ (un ) 2 un 2 khi n ? Áp dụng định lí trung bình Cesaro ta có:. 1 1 v v v u2 u2 lim 1 2 n 2 lim n 1 1 2 . n n n n 1 1 1 1 2 2 2 2 u u u u lim n 1 n n 1 2 . n n 1 1 1 u2 u2 v u2 1 Mà lim n 1 n lim n 0 ; lim 1 lim 0 . n n n n n n n n 1 2 un 1 1 lim 2 lim 2 lim (un n) . n n 2 n n n.un 2 U 2 1 Bài 7. Cho dãy U xác định bởi: 2 n N * . n Un 2009Un Un 1 2010 n Ui Ta lập dãy Sn với Sn .Tính lim Sn . x i 1 Ui 1 1 Hướng dẫn giải a Tacó a 0 0 . 1 2 Giả sử a1,a2 , ,an 1 0 . Tacó. a a a n n 1 0 0 1 2 n 1 1 1 1 1 1 1 an an 1 an 2 a0 . a a a 1 2 2 3 n n 1 n 1 n 2 0 0 1 2 n a a a a Hay a n 1 n 2 1 0 . n 1.2 2.3 (n 1)n n(n 1) Do a1,a2 , ,an 1 0 nên.
- an 1 an 2 a1 2an 1 3an 2 na1 1.2 2.3 (n 1)n 1 2 n 1 . 2 2 an 1 an 2 a1 a0 2 1 2 (n 1) n 2 an 1 an 2 a1 a0 . 1.2 2.3 (n 1)n 2 2an 1 3an 2 na1 n 1 2 n 1 Ta lại có. 2an 1 3an 2 na1 2an 1 3an 2 a1 n 1 2 n 1 n 2n n 1 . an 1 an 2 a1 a0 n n a0. 1 2 n 1 n an 1 an 2 a1 a0 2 . 1.2 2.3 (n 1)n n a a a a a a a n 1 n 2 1 0 0 0 0 . n 1.2 2.3 (n 1)n n(n 1) n2 n(n 1) Từ đó suy ra điều phải chứng minh. 2 1 un 1 Bài 8. Cho dãy số un xác định bởiu1 1, un 1 ,n 1. un a) Chứng minh:. u tan ,n 1 n 2n 1 b) Suy ra tính đơn điệu và bị chặn của un . HƯỚNG DẪN GIẢI a) Chứng minh bằng quy nạp toán học. b) Nhận xét 0 n 1 ,n 1 và hàm số tanx đồng biến trên 0; . 2 4 4 nên dãy số un giảm và bị chặn dưới bởi số tan 0 0 . và bị chặn trên bởi số tan 1. 4 . Bài 9. Cho dãy số xn xác định bởi:. 1 2 3 2014 2015 * x1 0; xn 1 xn 2 3 2014 2015 ,n ¥ . . xn xn xn xn xn * n 1.Với mỗi n ¥ ,đặt yn 2 .Chứng minh dãy số yn có giới hạn hữu hạn và tính giới hạn đó. xn
- 2.Tìm các số để dãy nxn có giới hạn hữu hạn và giới hạn là một số khác 0 . HƯỚNG DẪN GIẢI 1 2 2 1 2 1.Từ giả thiết suy ra xn 1 xn 0 xn 1 xn 2 2 xn 2 xn xn . Suy ra x2 x2 2 x2 2 x2 2n do đó lim x n 1 n n 1 1 n . Xét 2 2 1 2 3 2014 2015 1 2 3 2014 2015 xn 1 xn xn 1 xn xn 1 xn 2xn 2 3 2014 2015 2 3 2014 2015 xn xn xn xn xn xn xn xn xn xn . 1 2 3 2014 2015 2 3 2014 2015 2 2 3 4 2015 2016 1 2 2013 2014 xn xn xn xn xn xn xn xn xn . Suy ra lim x2 x2 2 n 1 n . 2 2 2 2 2 2 2 2 x xn xn 1 xn 1 xn 2 x2 x1 x1 Ta có n . n n Áp dụng định lý trung bình Cesaro ta có. 2 2 2 2 2 2 2 2 x xn xn 1 xn 1 xn 2 x2 x1 x1 lim n lim 2 . n n n 1 Do đó lim x2 2 n . n 2.Xét z nx x 2 n n x2 n n . Từ đó:. +) Nếu 2 thì lim zn . +)Nếu 2 thì lim zn 0 . 1 +) Nếu 2 thì lim z n 2 . Vậy 2 là giá trị cần tìm thỏa mãn đề bài. 3 Bài 10. Cho dãy số yn thỏa mãn y1 0, yn 1 y1 y2 yn ,n 1.
- y Chứng minh rằng dãy số n có giới hạn bằng 0 khi n . n Hướng dẫn giải Từ giả thiết ta có y3 y y3 ,n 2 , do đó dãy số y là dãy tăng, vì. n 1 n n nn 2 3 3 2 2 vậy yn 1 yn yn yn (yn 1) yn 1(yn 1) . 2 2 2 2 2 yn 1 yn 1,n 2 yn 1 yn 1 y2 n 1. 2 2 2 yn 1 y2 n 1 y2 n 1 2 . Mà lim 2 0 nên theo định lý kẹp ta có. n 1 (n 1) (n 1) 2 yn 1 yn 1 yn lim 0 lim 0 lim 0. n 1 n 1 n un (0;1) Bài 11. Tìm tất cả các hằng số c 0 sao cho mọi dãy số dãy số (un ) thỏa mãn: n 1. un 1(1 un ) c đều hội tụ. Với giá trị c tìm được hãy tính giới hạn của dãy (un ) . Hướng dẫn giải Ta xét các trường hợp sau. 1 c cun + Nếu c , thì từ giả thiết, ta có un 1 4cun ; n 1. 4 1 un un (1 un ) 1 Từ đây bằng quy nạp, ta suy ra u (4c)n 1u . Do 4c 1 nên u khi n . Do đó, c không n 1 n 4 thỏa mãn. 1 1 1 4c 1 1 4c a(1 b) c + Nếu 0 c , thì tồn tại a,b ; , a b sao cho . Thật vây, lấy 4 2 2 b(1 a) c 1 1 4c 1 1 4c a ; , đặt b a x (x 0) , thì. 2 2 a(1 a) c a(1 b) c a(1 a x) c x . a Chú ý là b(1 a) a(1 a) c. Do đó, ta chỉ cần chọn x 0 như trên và b a x, thì được 2 bất đẳng thức nêu trên. Xét dãy số (un ) xác định bởi. a nêu n 2m un . b nêu n 2m 1 1 thì dãy (u ) thỏa mãn giả thiết nhưng không hội tụ. Thành thử, 0 c cũng không thỏa mãn. n 4
- 1 1 un + Nếu c , thì un 1 un . Suy ra dãy (un ) tăng và bị chặn. Do đó, (un ) hội tụ. 4 4(1 un ) 4un (1 un ) 1 1 1 Đặt x limu , thì từ giả thiết ta có x(1 x) hay x . Vậy limu n 4 2 n 2 1 x 1 2 Bài 12. Cho dãy số (xn) thỏa mãn: . Chứng minh dãy số trên có giới hạn. x2 x x n ; n 1 n 1 n n2 Hướng dẫn giải n n 1 *) Ta chứng minh x n2 với mọi n 1 (1). n 2 Thật vậy: n 1 đúng. k k 1 Giả sử (1) đúng với n k 1: x k 2 . k 2 2 2 xk 2 xk 2 2 xk 1 k 1 xk 2 k 1 2 xk k k 1 . k k 2 k 1 k k 1 2 3 k 1 k k 1 1 k 1 . k 2 2 2 2 k 1 3 k 1 k 1 k 2 k (đpcm). 2 2 2 *) Ta chứng minh xn có giới hạn. NX: xn tăng và xn 0 với mọi n . 1 1 1 2 1 1 1 1 Ta có 2 2 1 2 xn với mọi n 1. xn xn 1 xn n n n 1 x1 xn n 2 2 Vậy xn có giới hạn. 4 2 un 2013 * Bài 13. Cho dãy số un xác định bởi u1 2014, un 1 3 ,n ¥ . Đặt un un 4026 n 1 v , n * n 3 ¥ . Tính lim vn . k 1 uk 2013 Hướng dẫn giải 4 2 3 un 2013 (un 2013)(un 2013) + Ta có un 1 2013 3 2013 3 (1). un un 4026 (un 2013) (un 2013) * Từ đó bằng quy nạp ta chứng minh được un 2013,n ¥ .
- 1 1 1 1 1 1 + Từ (1) suy ra 3 3 . un 1 2013 un 2013 un 2013 un 2013 un 2013 un 1 2013 n 1 1 1 1 1 Do đó vn 1 . k 1 uk 2013 uk 1 2013 u1 2013 uk 1 2013 uk 1 2013 + Ta chứng minh limun . 2 2 2 un 4026un 2013 (un 2013) * Thật vậy, ta có un 1 un 3 3 0,n ¥ . un un 4026 un un 4026 Suy ra un là dãy tăng, ta có 2014 u1 u2 a4 20132 Giả sử u bị chặn trên và limu a thì a 2014 . Khi đó a . n n a3 a 4026 a 2013 2014 ( vô lí). Suy ra un không bị chặn trên, do đó limun . 1 Vậy limvn lim (1 ) 1. uk 1 2013 u 2013 2 1 un 1 Bài 14. Cho dãy số un xác định bởi: . Tìm lim . 2 * n 2 2 2 un 1 un 2, n ¥ u1 .u2 un Hướng dẫn giải 1 - Vì u 2013 2 nên đặt u a , a > 1. 1 1 a 2 2 1 2 1 Ta có u2 u1 2 a 2 a 2 . a a Bằng quy nạp, ta chứng minh được. 2n 1 un 1 a n , n ¥ . a2 - Xét. n n 1 n 1 i 1 1 1 1 i 1 1 1 n 1 u a2 a a a2 a a2 1.0 i 2i 1 2i 1 2n i 1 i 1 a a a i 1 a a a 2 1 2n 1 . 2 a a n 2 2 2 u a 2 u 1 1 n 1 a lim n 1 a a 4 20132 4 1.0 2 2 2 2 n 2 2 2 u1 .u2 un 2n 1 u1 .u2 un a a a n a2 Bài 15. Cho dãy số (an ) thỏa mãn: lim(5an 1 3an ) 4 . Tính lim an . Hướng dẫn giải Đặt an 2 bn . Từ giả thiết suy ra lim(5bn 1 3bn ) 0 . Với số dương bé tùy ý, tồn tại số N sao cho với n N thì ta có:.
- 5b 3b (1). n 1 n 5 - Nếu b .b 0 thì từ (1) dẫn đến 5b 3b b . n 1 n n 1 n 5 n - Xét trường hợp bn 1.bn 0 hay bn 1, bn cùng dấu, chẳng hạn chúng cùng dương. . Nếu 2b b 0 thì kết hợp với (1): 3(2b b ) b dẫn đến b . n 1 n n 1 n n 1 5 n 1 5 Mà từ (1) ta có 3b 5b b . n n 1 5 n 5 1 . Nếu 2b b 0 thì kết hợp với (1): (b b ) b dẫn đến b . n 1 n 2 n 1 n 2 n 5 n Tóm lại luôn có bn , hay lim(bn ) 0 . Vậy lim(an ) 2 . 2015 un 2un 4 Bài 16. Cho dãy (un ) xác định như sau: u1 = 3 và un 1 2014 , n 1,2,3 Với mỗi số nguyên un un 6 n 1 dương n , đặt vn . Tìm lim vn . 2014 n i 1 ui 4 Hướng dẫn giải 2015 un 2un 4 (un 2)(un 4) Đặt 2014 ta có un 1 2 2014 2 , (*) . un un 6 (un 4) (un 2) Bằng quy nạp ta chứng minh được un 3, n 1. 1 2 un 2un 4 (un 2) Xét un 1 un un 0, un 3. un un 6 un un 6 Do đó (un ) là dãy tăng và 3 u1 u2 L un L. a 1 a 4 Giả sử (un ) bị chặn trên, suy ra lim un a , a 3. Khi đó ta có a a 2 3(vô lí), suy ra n a a 6 (un ) không bị chặn trên. Vậy lim un . n 1 1 1 1 1 1 Từ (*) suy ra , hay . un 1 2 un 2 un 4 un 4 un 2 un 1 2 n 1 n 1 1 1 v L 1 . n 2014 i 1 ui 4 i 1 ui 2 ui 1 2 un 1 2 1 Vậy lim vn lim (1 ) 1. n n un 1 2
- u1 3 Bài 17. Cho dãy số u được xác định bởi . Chứng minh rằng dãy u có n 3 n un 1 3un 1 2 un , n 1 giới hạn hữu hạn và tìm giới hạn đó. Hướng dẫn giải u1 3 Dãy số u được xác định bởi . n 3 un 1 3un 1 2 un , n 1 Ta chứng minh un 2, n 1. Thật vậy ta có u1 3 2 . 3 Giả sử uk 2, k 1, khi đó uk 1 3uk 1 2 uk 2 2 2 nên. 3 2 uk 1 3uk 1 2 0 uk 1 1 uk 1 2 0 uk 1 2 . Do đó theo nguyên lý quy nạp thì un 2, n 1. Xét hàm số f t t3 3t trên khoảng 2, . Ta có f ' t 3t 2 3 0, t 2. Do đó hàm số f t đồng biến trên khoảng 2, . 3 3 Mặt khác ta có u1 3u1 18 5 u2 3u2 f u1 f u2 u1 u2 . 3 3 Giả sử uk uk 1 k 1 2 uk 2 uk 1 uk 1 3uk 1 uk 2 3uk 2 . f uk 1 f uk 2 uk 1 uk 2 . Do đó un un 1, n 1 Dãy un là dãy giảm và bị chặn dưới bởi 2 nên dãy un có giới hạn hữu hạn. 3 Giả sử limun a a 2 . Từ hệ thức truy hồi un 1 3un 1 2 un chuyển qua giới hạn ta được:. 2 a3 3a 2 a a3 3a 2 a a 2 a5 2a4 2a3 4a2 a 1 0 . a 2 a2 a3 4 2a3 a 1 a 1 0 a 2 a 2 . Vậy limun 2 . 2 * Bài 18. Cho dãy số xn thỏa mãn: x1 2015 và xn 1 xn . xn 1 n N (*). n 1 Tìm: lim . i 1 xi 1 Hướng dẫn giải * * Ta có: xn 0 n N .
- 2 xn 1 * Và: xn 1 0 n N xn là dãy số tăng. xn * Đặt un xn . * * un xác định vì xn 0 n N và un 0 n N . 2 un 1 xn 1 xn 1 un 1 . Nên từ giả thiết (*) ta có:. 2 2 2 2 un 1 un . un 1 un . un 1 . 2 * un 1 un un n N (1). * Xét dãy số un ta có:. 2 * . un 1 un un 0 n N un tăng. . Giả sử un có giới hạn là a . Từ (1) ta có:. a a2 a a 0 (loại). un tăng và không bị chặn limun . * Ta có:. 1 u2 u u u u 1 1 n n 1 n n 1 n . 2 2 un 1 un 1 un un un .un un 1.un un un 1 n 1 1 1 . i1 1 ui 1 u1 un 1 n 1 1 1 1 lim lim . i 1 ui 1 u1 un 1 2015 n 1 1 Vậy: lim . . i 1 xi 1 2015 u1 5 Bài 19. Cho dãy số un ; (n = 1; 2;.) được xác định bởi: . Chứng minh dãy số un có un 1 un 12 giới hạn. Tìm giới hạn đó. Hướng dẫn giải Dự doán giới hạn của dãy số,bằng cách giải phương trình:. a 0 a a 12 a 4 . 2 a a 12 Nhận xét u1 5. u2 u1 12 17 u1 .
- u3 u2 12 17 12 u2 . Ta dự đoán dãy số un là dãy số giảm và bị chặn dưới bởi 4 tức là un 4 . Chứng minh dãy số un bị chặn: tức là un 4 . khi n 1, u1 5 4 vậy n 1 đúng. Giả sử uk 4 , ta chứng minh:uk 1 4 . Thật vậy ta có:. 2 2 2 uk 1 uk 12 0 uk 1 uk 12 uk 1 12 uk 4 uk 1 16 uk 1 4 . Vậy dãy số un bị chặn dưới. Ta chứng minh dãy số un là dãy số giảm. Ta có:. 2 un un 12 (un 4)(un 3) un 1 un un 12 un un 1 un 0 (vì un 4 ). un 12 un un 12 un Vậy dãy số un giảm và bị chặn dưới nên có giới hạn. Đặt limun a thì limun 1 a Ta có:. un 1 un 12 limun 1 lim un 12 a a 12 a 4 . Vậy limun 4 Bài 20. Cho dãy số xn được xác định bởi. x1 2,1 x 2 x2 8x 4 . x n n n * ,n 1,2, n 1 2 n 1 y Với mỗi số nguyên dương n, đặt n 2 . Tìm lim yn . i 1 xi 4 Hướng dẫn giải Ta có kết quả sau: với số thực a 2 bất kì, ta có. a 2 a 2 8a 4 a 2 a 2 4a 4 a 2 a 2 a . 2 2 2 Do đó 2,1 x1 x2 xn là dãy tăng, giả sử bị chặn trên tức là có giới hạn lim xn L 2 . Chuyển qua giới hạn điều kiện (*) ta có phương trình. x 2 x 2 8x 4 x x 2 4 x 3 x 2 . 2
- phương trình này không có nghiệm hữu hạn lớn hơn 2. Suy ra dãy xn tăng và không bị chặn trên nên lim xn . x 2 x 2 8x 4 Ta có x n n n 2x x 2 x 2 8x 4 . n 1 2 n 1 n n n 2 2 2 2xn 1 xn 2 xn 8xn 4 xn 2 4 xn 3 xn 2 . 1 x 3 x 2 1 1 1 n n . 2 2 2 xn 2 xn 1 4 xn 1 4 xn 1 2 xn 1 4 1 1 1 . 2 xn 1 4 xn 2 xn 1 2 n 1 1 1 1 Suy ra y 10 . n 2 i 1 xi 4 x1 2 xn 1 2 xn 1 2 Vậy lim yn 10 . 2 Bài 21. Cho dãy số xn được xác định bởi x1 2016, xn 1 xn xn 1,n 1,2,3, a)Chứng minh rằng xn tăng và lim xn . 1 1 1 b)Với mỗi số nguyên dương n , đặt yn 2016 . Tính lim yn . . x1 x2 xn Hướng dẫn giải x x x2 2x 1 x 1 2 0 x x ,n 1. x a)Ta có n 1 n n n n n 1 n Do đó n tăng. Ta chứng minh bằng quy nạp theo n rằng xn n 1,n 1 (1). Thật vậy, (1) đúng với n 1.Giả sử (1) đúng với n (n 1) thì. 2 xn 1 xn xn 1 1 n n 1 1 n n 1 n 2. Vậy (1) đúng với mọi n. Từ xn tăng ngặt và xn n 1,n 1 suy ra lim xn 1 1 1 1 b)Ta có xn 1 1 xn xn 1 . Suy ra . xn 1 1 xn xn 1 xn 1 xn 1 1 1 Từ đó x x 1 x 1 n n n 1 . 1 1 1 1 1 1 1 yn 2016 2016 2016 x x x x 1 x 1 2015 x 1 1 2 n 1 n 1 n 1 . 1 2016 Từ lim xn lim 0 . Vậy lim yn . . xn 2015
- 1 1 1 a Bài 22. Cho dãy a : 2 2 2 . Chứng minh dãy n n n 1 an sin1 2 sin 3 sin n sin n 1 2 2 3 n n n 1 a hội tụ và tính lim n . n2 Hướng dẫn giải 1 Bổ đề 1: x sin x x x3x 0 . 6 1 1 1 1 Bổ đề 2: lim 2 3 n 0 . n 1 1 1 1 1 1 Đặt x n2 sin . Áp dụng bổ đề 1: sin k x k . n n k k k 6k 3 k 6k 1 1 1 1 2 n an 1 2 n 1 . 6 2 n 1 1 1 1 a 1 Chia các vế cho n2 : n 2 n . 2 n2 2 6n2 an 1 Cho n , và lấy giới hạn, suy ra lim 2 . n 2 . 2 n 1 un Bài 23. Cho dãy số u1 2,un 1 n 1. Tính giới hạn lim . n un 1 n Hướng dẫn giải n2 Ta chứng minh quy nạp u n 1 , n 1. n 1 n Rõ ràng khẳng định đã đúng với u1 . 2 k 2 k 1 Giả sử đã có u k 1, k 1. Ta chứng minh u k 2 . k 1 k k 2 k 1 2 (k 1)2 k 1 Thật vậy: uk k 1 uk 1 . uk 1 k 2 2 k 2 (k 1)2 k 1 1 u u k 2 k 2 k k 1 k 1 u 1 k 2 k 2 k 1 k 1 k 1 2 n un Vậy ta có un n 1, n 1 lim 1. n 1 n n
- x1 Bài 24. Cho 2 và dãy số x với: . n 2 n 3 * 2x n 1 3x n n N n * a) Chứng minh: x n 1 với n N . b) Chứng minh dãy số x n có giới hạn và tìm giới hạn đó. Hướng dẫn giải * Ta chứng minh x n 1 với n N bằng quy nạp. Ta có: x1 nên x1 1. * Giả sử: x k 1 với k N . n 1 n 3 Ta có: 3x 2 3 và 1 nên 3x 2 2 . Suyra: x 1. k n n n n 1 * Vậy x n 1 với n N . Ta chứng minh xn là dãy giảm bằng quy nạp. 2 Vì 2 nên 3 4 2 .Ta có x 2 x1 . n 1 Giả sử: x x . Ta có: 3 x 2 3x 2 và f n = là hàm nghịch biến nên:. k 1 k k 1 k n k 4 k 3 3x 2 3x 2 . k 1 k 1 k k Suy ra: x k 2 x k 1 . Vậy xn là dãy giảm. xn lả dãy giảm và bị chặn dưới bởi 1 nên hội tụ. x1 1 2 * * Đặt lim x n .Ta có 2 3 1 1. xn 3x 4 (n N ) un un x2n 1 n N . x n n 1 xn 1 Vậy lim x n 1. u1 2011 Bài 25. Cho dãy số un được xác định: . 2n u 2n u 1 , n N * n 1 n Chứng minh rằng dãy số un có giới hạn hữu hạn và tính giới hạn đó. Hướng dẫn giải 1 Ta có 2n u 2n.u 1 u u . n 1 n n 1 n 2n 1–n Chứng minh : un 2 (bằng quy nạp). 0 *với n 1 ta có u1 2011 2 .
- 1–k *Giả sử uk 2 (với k 1 ). –k *Cần chứng minh : uk 1 2 . k 1 k k k Ta có uk 1 uk 2 2 2 2 . Suy ra điều phải chứng minh. 1 Từ đó ta có u – 2–n 0 với mọi n u u . n n 1 n 2n 1 1 1 1 Ta có u u ; u u ; u u ; ;u u . 2 1 2 3 2 22 4 3 23 n n 1 2n 1 1 1 1 1 un u1 . 2 22 23 2n 1 n 1 1 1 n 1 1 2 1 Công thức tổng quát : un 2011 . 2011 1 . 2 1 2 2 Vậy lim un 2010. u a 1 Bài 26. Cho số thực a 0;1 , xét dãy số un với: 1 2013 . u u2 u ,n n 1 2014 n 2014 n a) Chứng minh rằng: 0 un 1,n . b) Chứng minh rằng un có giới hạn hữu hạn. Tìm giới hạn đó. Hướng dẫn giải a) Chứng minh: 0 un 1,n 1 . n 1:u1 a 0;1 1 đúng với n=1. 1 1 Giả sử 0 u 1với k 1,k . Ta có: 0 u2 1 0 u2 . k k 2014 k 2014 2013 2013 0 u 1 0 u . k 2014 k 2014 1 2013 0 u2 u 1 0 u 1. 2014 k 2014 k k 1 Vậy: 0 un 1,n . b) Chứng minh rằng un có giới hạn hữu hạn. Tìm giới hạn đó. Ta chứng minh: un là dãy tăng. 1 2013 1 n ,u u u2 u u u u u u 2013 0 . n 1 n 2014 n 2014 n n 2014 n n n n
- un 1 un ,n hay un là dãy tăng.(2). Từ (1),(2) suy ra un có giới hạn hữu hạn.Giả sử un có giới hạn là a, o a 1 . 1 2013 Ta có: a a2 a a 1. Vậy limu 1. 2014 2014 n 3 u 1 2 Bài 27. Cho dãy số(un) xác định như sau: . 1 2 u u3 , n N n 1 3 n 3 a) Chứng minh rằng: 1 un 2,n . b) Chứng minh rằng un có giới hạn hữu hạn. Tìm giới hạn đó. Hướng dẫn giải 3 a) Với: n 1:u 1 đúng với n=1. 1 2 Giả sử: 1 uk 2 với k 1,k . 1 3 8 1 2 Ta có: uk 1 2 uk uk 2 uk 2uk 4 0 uk 1 2 . 3 3 3 1 3 uk 1 1 uk 1 0 uk 1 1. 3 1 uk 1 2 . Vậy: 1 un 2,n . 1 2 b) n ,u u u 1 u 2 0 u u ,n hay u là dãy giảm (2). n 1 n 3 n n n 1 n n Từ (1),(2) suy ra un có giới hạn hữu hạn. Gọi a là giới hạn của un , 1 a 2 . 1 2 Ta có a a3 a 1. Vậy limu 1. 3 3 n u2 Bài 28. Cho dãy số u xác định bởi: u 1;u n u ,n N * . Tìm giới hạn sau: n 1 n 1 2015 n u u u lim 1 2 n . n u2 u3 un 1 Hướng dẫn giải 2 un un 1 1 Từ đề bài ta có: un 1 un . Suy ra: 2015 . 2015 un 1 un un 1 u u u 1 1 1 Ta có: 1 2 k 2015 2015 1 . u2 u3 uk 1 u1 uk 1 uk 1
- Ta có un là dãy đơn điệu tăng và u1 1. 2 Nếu lim un thì 0 . n 2015 ( vô lí vì un là dãy đơn điệu tăng và u1 1). Suy ra: lim un . n u u u Kết luận: lim 1 2 n 2015 . n u2 u3 un 1 u1 2013 * Bài 29. Cho dãy số un xác định bởi 2 n N . Chứng minh rằng dãy (un) có un 2un .un 1 2013 0 giới hạn và tính giới hạn đó. Hướng dẫn giải 2 Từ hệ thức truy hồi suy ra 2un .un 1 un 2013. Bằng quy nạp chứng minh được un > 0, với mọi n. Do đó ta có:. 2 un 1 2013 1 2013 2013 un un 1 un . 2013,n 1. 2un 1 2 un 1 un Mặt khác ta có :. 2 un 1 un 2013 1 2013 1 1 2 2 1. un 2un 2 2un 2 2 (un) là dãy số giảm và bị chặn dưới bởi 2013 , do đó (un) có giới hạn hữu hạn. Đặt limun a . a2 2013 Ta có : a a 2013 . Vậy limu 2013 . 2a n 4 xn 9 * Bài 30. Cho dãy số xn xác định bởi: x1 4, xn 1 3 ,n ¥ . xn xn 6 a) Chứng minh rằng lim xn ;. n n 1 n y b) Với mỗi số nguyên dương , đặt n 3 . Tính lim yn . k 1 xk 3 Hướng dẫn giải 4 3 x 9 xn 3 xn 3 a) Xét x 3 n * . n 1 3 3 xn xn 6 xn 3 xn 3 Bằng quy nạp chứng minh được xn 3,n 1.
- 4 2 xn 9 xn 6xn 9 Xét xn 1 xn 3 xn 3 . xn xn 6 xn xn 6 2 xn 3 * xn 1 xn 3 0, n ¥ . xn xn 6 Do đó xn là dãy tăng và 4 x1 x2 x3 Giả sử xn bị chặn trên lim xn a . a4 9 Do đó: a a 3 4 (vô lý). Suy ra x không bị chặn trên. Vậy lim x . a3 a 6 n n 1 1 1 1 1 1 b) Từ (*), suy ra: 3 3 . xn 1 3 xn 3 xn 3 xn 3 xn 3 xn 1 3 n 1 n 1 1 1 Suy ra: y 1 . n 3 k 1 xk 3 k 1 xk 3 xk 1 3 xn 1 3 1 Vậy lim yn lim 1 1. xn 1 3 x 1 1 x2014 x2014 x2014 2015 1 2 n Bài 31. Cho dãy số x . Tìm giới hạn của dãy số un với un . n x x x xn 1 xn 2 3 n 1 2015 Hướng dẫn giải 2015 2015 2015 xn xn xn 1 xn xn xn 1 xn xn 1 xn 2015 2015 xn 1xn 2015xn 1xn . 1 1 x2014 1 1 x2014 n 2015 n xn xn 1 2015xn 1 xn xn 1 xn 1 . 1 Từ đó un 2015 1 . xn 1 Dễ thấy xn là dãy tăng và 1 x1 x2 x3 . Giả sử xn bị chặn trên lim xn a . a2015 Do đó: a a a 0 1 (vô lý). Suy ra x không bị chặn trên. Vậy lim x . 2015 n n 1 Vậy limun lim 2015 1 2015 . xn 1
- x 1 1 Bài 32. Cho dãy số{x } xác định bởi 2 . Tìm giới hạn của dãy (S ) với n xn n xn 1 xn 2015 x1 x2 xn Sn . x2 x3 xn 1 Hướng dẫn giải 2 2 xn 2 xn 1 xn xn xn 1 1 xn 1 xn 2015 xn 1 xn xn 2015 2015 2015 xn 1xn xn 1xn xn 1 xn xn 1 x1 x2 xn 1 1 1 Suy ra: Sn 2015 2015 1 . x2 x3 xn 1 x1 xn 1 xn 1 Dễ thấy xn là dãy tăng và 1 x1 x2 x3 . Giả sử xn bị chặn trên lim xn a . a2 Do đó: a a a 0 1 (vô lý). Suy ra x không bị chặn trên. Vậy lim x . 2015 n n 1 Vậy limSn lim 2015 1 2015 . xn 1 n x1 1 1 Bài 33. Cho dãy số (xn ) xác định bởi . Đặt Sn . x 2 xn 1 xn (xn 1)(xn 2)(xn 3) 1 k 1 k Tìm limSn . Hướng dẫn giải x x (x 1)(x 2)(x 3) 1 (x 2 3x )(x 2 3x 2) 1 x2 3x 1 n 1 n n n n n n n n n n . 1 1 1 n 1 1 1 1 1 Ta có Sn . xn 2 xn 1 xn 1 1 k 1 xk 2 x1 1 xn 1 1 2 xn 1 1 2 * Dễ thấy: xn 1 xn xn 1 0,n N suy ra xn là dãy tăng và 1 x1 x2 x3 . Giả sử xn bị chặn trên lim xn a . 2 Do đó: a a 3a 1 a 1 1 (vô lý). Suy ra xn không bị chặn trên. Vậy lim xn . 1 1 1 Vậy limSn lim . 2 xn 1 1 2 2016 u1 1 1 1 Bài 34. Cho dãy số (un) xác định bởi: 2015 . Đặt Sn . . . 2 u1 2 u2 2 un 2 2un 1 un 2un , n ¥ * Tính: limSn.
- Hướng dẫn giải u u 2 1 1 1 1 1 1 2u u u 2 u n n n 1 n n n 1 2 u u u 2 u 2 u u n 1 n n n n n 1 . n 1 1 1 2015 1 Sn . k 1 uk 2 u1 un 1 2016 un 1 * Bằng quy nạp ta dễ dàng chứng minh được un 0,n N . 1 2016 Khi đó: u u u 2 0,n N * suy ra u là dãy tăng và u u u . n 1 n 2 n n 2015 1 2 3 Giả sử un bị chặn trên limun a . 2016 Do đó: 2a a2 2a a 0 (vô lý). Suy ra u không bị chặn trên. 2015 n Vậy limun . 2015 1 2015 Vậy limSn lim . 2016 un 1 2016 4 xn 9 * Bài 35. Cho dãy số xn xác định bởi: x1 4, xn 1 3 ,n ¥ . xn xn 6 a) Chứng minh rằng lim xn ;. n n 1 n y b) Với mỗi số nguyên dương , đặt n 3 . Tính lim yn . k 1 xk 3 Hướng dẫn giải 4 3 x 9 xn 3 xn 3 a) Xét x 3 n * . n 1 3 3 xn xn 6 xn 3 xn 3 Bằng quy nạp chứng minh được xn 3,n 1. 4 2 xn 9 xn 6xn 9 Xét xn 1 xn 3 xn 3 . xn xn 6 xn xn 6 2 xn 3 * xn 1 xn 3 0, n ¥ . xn xn 6 Do đó xn là dãy tăng và 4 x1 x2 x3 Giả sử xn bị chặn trên lim xn a . a4 9 Do đó: a a 3 4 (vô lý). Suy ra x không bị chặn trên. Vậy lim x . a3 a 6 n n
- 1 1 1 1 1 1 b) Từ (*), suy ra: 3 3 . xn 1 3 xn 3 xn 3 xn 3 xn 3 xn 1 3 n 1 n 1 1 1 Suy ra: y 1 . n 3 k 1 xk 3 k 1 xk 3 xk 1 3 xn 1 3 1 Vậy lim yn lim 1 1. xn 1 3