Tài liệu ôn thi học sinh giỏi Toán Lớp 11 - Bài tập dãy số, giới hạn số 9 - Ngô Tùng Hiếu

docx 21 trang nhungbui22 4510
Bạn đang xem 20 trang mẫu của tài liệu "Tài liệu ôn thi học sinh giỏi Toán Lớp 11 - Bài tập dãy số, giới hạn số 9 - Ngô Tùng Hiếu", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docxtai_lieu_on_thi_hoc_sinh_gioi_toan_lop_11_bai_tap_day_so_gio.docx

Nội dung text: Tài liệu ôn thi học sinh giỏi Toán Lớp 11 - Bài tập dãy số, giới hạn số 9 - Ngô Tùng Hiếu

  1. 1. XÁC ĐỊNH SỐ HẠNG TỔNG QUÁT. 2 Bài 1. Cho dãy số un xác định bởi u1 1 và un 1 3un 2 với mọi n 1. a) Xác định số hạng tổng quát của dãy số un . 2 2 2 2 b) Tính tổng S u1 u2 u3 u2011 . Hướng dẫn giải * a) Dễ thấy un 0,n N . 2 2 2 Từ un 1 3un 2 un 1 3un 2 . 2 Đặt vn un thì có: vn 1 3vn 2 vn 1 1 3 vn 1 . Đặt xn vn 1 thì ta có: xn 1 3xn . Từ đây suy ra xn là cấp số nhân với x1 2 , công bội là 3. n 1 n 1 n 1 Nên: xn 2.3 vn 2.3 1 un 2.3 1 . b) S 2.30 2.31 2.32 2.32010 2011. 2 30 31 32 32010 2011. 2 32011 1 2011 32011 2012 . 3 1 n Bài 2. Cho dãy số un được xác định bởi u1 1 và un 1 un 2 với mọi n 1. n a) Chứng minh rằng: un 2 1. b) Tính tổng S u1 u2 u3 un theo n . Hướng dẫn giải 1 2 a) Khi n 1: u2 u1 2 1 2 2 1 đúng. k Giả sử uk 2 1 đúng với k 1,k N . k 1 Ta chứng minh: uk 1 2 1. k k k k 1 Thật vậy: uk 1 uk 2 2 1 2 2 1. b) S 21 1 22 1 2n 1 21 22 2n n . 2n 1 S 2. n 2n 1 n 2. 2 1 u 2 1 Bài 3. Cho dãy số(un) xác định như sau: . un 2 1 un 1 (n 1,n ¥ ) 1 ( 2 1)un a) Chứng minh: tan 2 1. 8 b) Tính: u2015 .
  2. Hướng dẫn giải. 2 tan a) Ta có: 1 tan tan 8 tan2 2 tan 1 0 . 4 8 8 1 tan2 8 8 8 tan 2 1 8 tan 2 1(Vì tan dương). 8 8 tan 2 1 8 tan a tan tan(a ) tan b) Đặt u 2 tan a , ta có: u 8 tan(a ) , u 8 8 tan(a 2. ) . 1 2 3 1 tan a.tan 8 1 tan tan(a ) 8 8 8 8 Ta chứng minh: u tan(a (n 1) ),n 1,n ¥ (*). n 8 Với n 1: u1 tan a đúng. Giả sử (*) đúng với n k , k 1, hay ta có: u tan(a (k 1) ) . k 8 tan(a (k 1) ) tan u 2 1 Ta có: u k 8 8 tan(a k. ) . k 1 8 1 ( 2 1)uk 1 tan(a (k 1) ).tan 8 8 Vậy (*) đúng với n k 1. Vậy u tan(a (n 1) ),n 1,n ¥ . n 8 3 3 Cho n 2015 , ta có: u tan(a 2014. ) tan(a 251 ) tan(a ) . 2015 8 4 4 2 1 tan(a ) ( 2 1)2 tan2 . 4 2 1 8 u1 1 * Bài 4. Cho dãy số thực un với u2 1 (n N ) . un 2 2un 1 un * a) Chứng minh un 3 2n với mọi n N . b) Tính tổng S u1 u2 u2012 . Hướng dẫn giải. a) Dùng phương pháp qui nạp. u1 1 3 2.1, u2 3 2.2 1. Giả sử uk 3 2k k 3 .
  3. Ta có: uk 1 2uk uk 1 2(3 2k) (3 2(k 1)) . 1 2k 3 2(k 1) . * Vậy un 3 2n với mọi n N . b) S (3 2.1) (3 2.2) (3 2.2012) . 3.2012 2(1 2 2012) 6036 2013.2012 4044120 . v1 8 * Bài 5. Cho dãy số vn với v2 34 (n N ) . vn 2 8vn 1 1996vn Tìm số dư khi chia v2013 cho 2011. Hướng dẫn giải. u1 8 * Xét dãy số un với u2 34 (n N ) . un 2 8un 1 15un * Ta có vn  un mod 2011 với mọi n N . Xét phương trình đặc trưng:t 2 8t 15 0 . Phương trình trên có nghiệmt 5,t 3. n n 5A 3B 8 un có dạng un A.5 B.3 . Vì u1 5,u2 13 nên .Ta có: A B 1. 25A 9B 34 n n Ta có: un 5 3 . Ta có 2011 là số nguyên tố Theo định lý Fecma ta có:52010 1 mod 2011 . 32010 1 mod 2011 . Suy ra 52013 125 mod 2011 ,32013  27 mod 2011 . Vậy khi chia u2013 cho 2011 ta được số dư là 152. Suy ra khi chia v2013 cho 2011 ta được số dư là 152. u1 1 Bài 6. Cho dãy số un : n * . 3 2un 1 un 2, (n ¥ ) a) Chứng minh dãy số un là dãy số giảm. b) Lập công thức số hạng tổng quát của dãy số un . Hướng dẫn giải. a) Chứng minh dãy số un là dãy số giảm.
  4. u 1 Ta có: u n ; Chứng minh: u u n ¥ * bằng phương pháp quy nạp. n 1 2 3n n 1 n u 1 1 Ta có: 5 u2 u1 . u 2 6 Giả sử: uk 1 uk ;k ¥ và k 1. Chứng minh: uk 2 uk 1 . u 1 u 1 u 1 Ta có: u k 1 k k u . Vậy u u n ¥ * . k 2 2 3k 1 2 3k 1 2 3k k 1 n 1 n b) Lập công thức số hạng tổng quát của dãy số un . 3 Ta có: 3n (2u u ) 2 3n 1.u 3n.u 3. n 1 n n 1 2 n 3 3 Đặt v 3n u 6 , ta được: v 6 (v 6) 3 v v . n n n 1 2 n n 1 2 n v 9 1 3 Ta được: (vn ) : 3 là cấp số nhân có công bội q . v v , (n ¥ * ) 2 n 1 2 n n 1 n 1 3 3 Suy ra: vn v1. 9. . 2 2 vn 6 1 1 Vậy un n 6. n n . 3 2 3 Bài 7. Tìm số hạng tổng quát của dãy xn biết rằng:. x 1; x 5; x 125 0 1 2 * 2 2 ( n N ). xn 2 xn xn 1 3 xn 1 xn 1 10xn 1 xn Hướng dẫn giải. Từ đề bài ta có: xn 0 với mọi n N . x 3x 10x Ta có: n 2 n 1 n với mọi n N * . xn 1 xn xn 1 xn * Đặt yn ta được yn 2 3yn 1 10yn 0 với mọi n N . xn 1 n n Vì phương trình đặc trưng của dãy yn có hai nghiệm phân biệt 2;5 nên yn A 2 B.5 với mọi n N * . x1 y1 5 x0 B 1 n * Với ta có . Suy ra yn 5 với mọi n N . x A 0 y 2 25 2 x1
  5. n2 n n n n 1 n (n 1) 1 2 * Ta có xn 5 .xn 1 5 .5 5.x0 5 5 với mọi n N . n2 n 2 Kết hợp với x0 1, ta suy ra xn 5 với mọi n N . 7 u 1 2 Bài 8. Cho dãy số u : . n 7u 4 n * un 1 , n ¥ 2un 5 a) Chứng minh dãy số un là dãy số giảm. b) Lập công thức tổng quát của dãy số un . Hướng dẫn giải. a) Chứng minh dãy số un là dãy số giảm. 7 19 Ta có: u ; u u u . 1 2 2 8 1 2 Giả sử: uk uk 1 với k >1. Cần chứng minh: uk 1 uk 2 . 7u 4 7 27 1 7 27 1 Ta có:u k . u . k 1 2u 5 2 2 2u 5 k 2 2 2 2u 5 k k k 1 . 1 1 Mà u u k k 1 2u 5 2u 5 k K 1 . 7 27 1 7 27 1 . . uk 1 uk 2 (điều phải chứng minh). 2 2 2uk 5 2 2 2uk 1 5 b) Lập công thức tổng quát của dãy số un . 7 Ta có 0 u , n ¥ * . n 2 un 2 1 Xét dãy số xn , ta có: x1 un 1 3 . un 1 2 1 un 2 1 1 xn 1 xn (xn ) là cấp số nhân xn n un 1 1 3 un 1 3 3 . n un 2 1 n n 2.3 1 n 3 1 un 2.3 1 un n . u 1 3 3 1 n . 1 u 1 2016 Bài 9. Cho dãy số un : . 2015u 1 u n , n ¥ * n 1 2016 * a) Chứng minh rằng un 1, n ¥ .
  6. b) Lập công thức tổng quát của dãy số un . Hướng dẫn giải. * a) Chứng minh rằng un 1, n ¥ . 1 Ta có: u1 1 2016 . Giả sử: u 1, (k 1) ; Cần chứng minh: u 1 k k 1 . 2015u 1 Ta có: u 1 2015u 1 2016 k 1 u 1. Vậy u 1, n ¥ * . k k 2016 k 1 n b)Lập công thức tổng quát của dãy số un . 2015 Đặt xn un 1 ta có x1 2016 . 2015un 1 2015 2015 xn 1 un 1 1 1 un 1 xn 2016 2016 2016 . n 2015 xn là cấp số nhân xn 2016 . n 2015 * Vậy un 1 , n ¥ 2016 u1 2 Bài 10. Cho dãy số un xác định bởi: u2 3 . un nun 1 n 2 un 2 2n 4,n 3 a) Tìm số hạng tổng quát của dãy un . b) Tìm số dư khi chia u2016 cho 2015 . Hướng dẫn giải. v1 1 a) Đặt vn un n ta có: v2 1 . vn n(vn 1 n 1) (n 2)(vn 2 n 2) 3n 4 nvn 1 n 2 vn 2 ,n 3 Khi đó vn vn 1 (n 1)vn 1 (n 2)vn 2 . Lại có:. vn v2 (vn vn 1) (vn 1 vn 2 ) (v4 v3 ) (v3 v2 ) . (n 1)vn 1 (n 2)vn 2  (n 2)vn 2 (n 3)vn 3  (3v3 2v2 ) (2v2 1v1) . (n 1)vn 1 v1 . Do đó vn (n 1)vn 1 . Hay vn (n 1)(n 2)vn 2 (n 1)(n 2) 1.v1 (n 1)!.
  7. Vậy un (n 1)! n . b) Ta có u2016 2015! 2016 chia cho 2015 dư 1. x 3 1 Bài 11. Xác định công thức số hạng tổng quát của dãy số x : x . n x n 1 ,n 2 n 2 1 1 xn 1 Hướng dẫn giải. 1 1 1 1 1 Ta có: 1 2 . Đặt yn , khi đó ta được dãy yn xác định như sau: y1 và xn xn 1 xn 1 xn 3 2 yn yn 1 1 yn 1 . 1 cos 1 Vì y cot y cot 1 cot2 3 cot . 1 2 3 3 3 3 sin 2.3 3 Bằng quy nạp ta chứng minh được: y cot x tan ,n 1. n 2n 1.3 n 2n 1.3 4 xn 9 * Bài 12. Cho dãy số xn xác định bởi: x1 4, xn 1 3 ,n ¥ . xn xn 6 a) Chứng minh rằng lim xn ;. n n 1 b) Với mỗi số nguyên dương n , đặt y . Tính lim y . n  3 n k 1 xk 3 Hướng dẫn giải. 4 3 x 9 xn 3 xn 3 a) Xét x 3 n * . n 1 3 3 xn xn 6 xn 3 xn 3 Bằng quy nạp chứng minh được xn 3,n 1. 4 2 xn 9 xn 6xn 9 Xét xn 1 xn 3 xn 3 . xn xn 6 xn xn 6 2 xn 3 * xn 1 xn 3 0, n ¥ . xn xn 6 Do đó xn là dãy tăng và 4 x1 x2 x3 Giả sử xn bị chặn trên lim xn a . a4 9 Do đó: a a 3 4 (vô lý). Suy ra x không bị chặn trên. Vậy lim x . a3 a 6 n n
  8. 1 1 1 1 1 1 b) Từ (*), suy ra: 3 3 . xn 1 3 xn 3 xn 3 xn 3 xn 3 xn 1 3 n 1 n 1 1 1 Suy ra: y 1 . n  3  k 1 xk 3 k 1 xk 3 xk 1 3 xn 1 3 1 Vậy lim yn lim 1 1. xn 1 3 2. MỘT SỐ DẠNG TOÁN LIÊN QUAN ĐẾN TÍNH CHẤT CỦA DÃY SỐ. u1 2 Bài 13. Dãy số un xác định như sau: 2 . un 1 un un 1, n ¥ *. Chứng minh rằng. 1 2016 1 1 1 1 . 22015  22016 k 1 2 uk 2 Hướng dẫn giải. 2 2 Ta có: un 1 – un un –2un 1 un –1 . (1). Do u1 2 u2 – u1 1 u2 u1 . Từ đó bằng phép quy nạp ta suy ra un là dãy đơn điệu tăng thực sự, và u n nhận giá trị nguyên dương lớn hơn hoặc bằng 2 với mọi n 1,2, Ta viết lại điều kiện truy hồi xác định dãy số dưới dạng sau đây:. 2 un 1 –1 un –un un un –1 (2). 1 1 1 1 1 1 1 Từ đó dẫn đến: , (3) Bây giờ từ (3), ta có:. un 1 1 un (un 1) un 1 un un un 1 un 1 1 n 1 n 1 1 1 1 . (4) .   k 1 uk k 1 uk 1 uk 1 1 uk 1 1 Từ (4) suy ra bất đẳng thức cần chứng minh tương đương với. 1 1 1 n 1 n 1 1 1 22 u 1 22 (5) . 2n 1 2n n 1 2 un 1 1 2 (ở đây n 2016 ). Ta sẽ chứng minh (5) đúng với mọi n . Khi đó nó sẽ đúng với n 2016 . Do un nguyên dương với mọi n , (5) tương đương. 2n 1 2n 2 1 un 1 1 2 . (6). Xét khi n k 1. Theo (2), ta có: uk 2 –1 uk 1 uk 1 –1 . Vì thế theo giả thiết quy nạp suy ra:.
  9. k k k k k 1 u 1 22 (22 1) 22 .22 22 k 2 . 2k 1 2k 1 2k 1 2k 1 2k uk 2 1 (2 1).(2 1 1) 2 .2 2 Như thế với n k 1, ta thu được:. 2k 2k 1 2 uk 2 1 2 k k 1 22 1 u 1 22 . (8) k 2 . Từ (8) suy ra (6) đúng với mọi n 2,3, Vì vậy (5) đúng n 2016 . Ta có điều phải chứng minh!. 2 an 5an 10 Bài 14. Cho dãy (an )n 1 : a1 1; an 1 n 1. 5 an a) Chứng minh dãy (an ) hội tụ và tính lim an . a a a 5 5 b) Chứng minh 1 2 n n 1. n 2 Hướng dẫn giải. a) Bằng phương pháp chứng minh qui nạp ta có: 1 a 3 n . n 2 5 5 x2 5x 10 10 Đặt A và xét hàm f (x) x(x 5) . 2 5 x 5 x 10 3 1 Suy ra f '(x) 1 0x 1; , như vậy f (x) nghịch biến trên đoạn ;1 . 2 5 x 2 2 a1 a3 a5 a2k 1 A lim a2k 1 b A Dẫn đến . a2 a4 a6 a2k A lim a2k c A c2 5c 10 b 5 c 5 5 Kết hợp công thức xác định dãy ta được: b c . b2 5b 10 2 c 5 b 5 5 Vậy lim a . n 2 5 5 b) Nhận xét: t 1; thì t f (t) 5 5 . 2 Dẫn đến a2k 1 a2k 5 5 k 1. 5 5 a a a a 2k (1). 1 2 2k 1 2k 2 Như vậy bất đẳng thức đúng với n 2k .
  10. 5 5 Trường hợp n 2k 1, chú ý a , kết hợp với (1) thu được:. 2k 1 2 5 5 a a a a a (2k 1) . 1 2 2k 1 2k 2k 1 2 Vậy bất đẳng thức được chứng minh. an (0;1) + Bài 15. Cho dãy số an thỏa mãn: 1 với mọi n Z . a (1 a ) n 1 n 4 1 1 A. CMR a n 2 2n B. Chứng tỏ dãy an có giới hạn và tìm giới hạn đó. u 5 1 Bài 16. Cho dãy (u ) xác định bởi 2 với n 1 n un 4 un 1 2un A. Chứng minh un 2 với mọi n nguyên dương. B. Xét tính tăng, giảm của dãy số (un ) . Hướng dẫn giải. u 1 1 Bài 17. Cho dãy số un như sau u2 2 . * nun 2 3n 1 un 1 2 n 1 un 3,n ¥ n * a) Chứng minh un 2 3n,n ¥ . n 1 b) Đặt Sn uk . Chứng minh rằng nếu n là số nguyên tố và n > 2 thì Sn chia hết cho n. k 1 Hướng dẫn giải. 1 a) Với n 1, u1 2 3.1 1. n 2 , u 22 3.2 2 1 . k k 1 Giả sử uk 2 3k;uk 1 2 3 k 1 . k 2 * Chứng minh uk 2 2 3 k 2 ,k ¥ . Ta có. ku 3k 1 u 2 k 1 u 3 k 2 k 1 k . ku 3k 1 2k 1 3 k 1 2 k 1 2k 3k 3 k 2 . k 2 uk 2 2 3 k 2 .
  11. Vậy u 2k 2 3 k 2 ,k ¥ *. k 2 . n 1 b) Đặt Sn uk . Chứng minh rằng nếu n là số nguyên tố và n 2 thì Sn chia hết cho n . k 1 n 1 2 n 1 Ta có: Sn uk 2 2 2 3 1 2 (n 1) k 1 . n 1 1 2 (n 1)n n 1 (n 1)n Sn 2. 3. 2 2 1 3 1 2 2 2 . n 1 Với n là số nguyên tố 2 1 chia hết cho n . (n 1)n Do n là số nguyên tố lớn hơn 2 chia hết cho n . 2 Vậy Sn n . u1 0 Bài 18. Cho dãy số un u2 18 . * un 2 5un 1 6un 24,n ¥ Chứng minh rằng nếu n là số nguyên tố và n 3 thì un chia hết cho 6n . Hướng dẫn giải. * Đặt vn un 12 hay un vn 12,n ¥ . Khi đó vn 2 5vn 1 6vn . v1 12 Ta được vn v2 30 . vn 2 5vn 1 6vn Phương trình đặc trưng  2 5 6 0 có nghiệm  2   3 . n n Khi đó vn a.2 b.3 . v1 12 2a 3b 12 a 3 Ta có . v2 30 4a 9b 30 b 2 n n Suy ra vn 3.2 2.3 . n n Khi đó un vn 12 3.2 2.3 12 . n 1 n 1 Ta có un 6 2 3 2 nên un chia hết cho 6 . Mặt khác n là số nguyên tố nên theo định lý Fermat. 2n  2(mod n) 3.2n  6(mod n) hay . n n 3  3(mod n) 2.3  6(mod n) n n Từ đó un (3.2 2.3 12)  0(mod n) .
  12. Suy ra un chia hết cho n . Với n là số nguyên tố và n 3 (n,6) 1. Suy ra un chia hết cho 6n . x 1 1 Bài 19. Cho dãy số xn với . x x x 5 x 2 5x 8 16 n N * n 1 n n n n n 1 a) Chứng minh xn 5 , với mọi n 2 . n 1 b) Đặt yn . Tìm lim yn .  n k 1 xk 3 Hướng dẫn giải. n 1 a) Chứng minh xn 5 , với mọi n 2 . 2 1 x2 10 5 5 . n 1 Giả sử ta có xn 5 n 2 . x x x 5 x 2 5x 8 16 x 2 5x x 2 5x 8 16 n 1 n n n n n n n n . 2 n 1 n xn 5xn 4 5xn 5.5 5 n Suy ra xn 1 5 . n 1 Vậy theo qui nạp xn 5 với n 2 . n 1 b) Đặt yn . Tìm lim yn .  n k 1 xk 3 Ta có:. 2 2 xn 1 xn 5xn 4 xn 1 2 xn 5xn 6 xn 2 xn 3 . 1 1 1 1 x 2 x 2 x 3 x 2 x 3 n 1 n n n n . 1 1 1 xn 3 xn 2 xn 1 2 n 1 n 1 1 1 1 1 1 yn   . k 1 xk 3 k 1 xk 2 xk 1 2 x1 2 xn 1 2 3 xn 1 2 1 1 1 n 1 lim yn lim (vì xn 1 5 lim 0 ). n n n 3 xn 1 2 3 xn 1 1 Vậy lim yn . n 3 3. GIỚI HẠN CỦA DÃY SỐ.
  13. Bài 20. Cho dãy a :. n n 1 1 1 1 a sin1 22 sin 32 sin n2 sin n 1. n 2 3 n an an Chứng minh dãy 2 hội tụ và tính lim 2 . n n 1 n Hướng dẫn giải. 1 Bổ đề 1: x sin x x x3x 0 . 6 1 1 1 1 Bổ đề 2: lim 2 3 n 0 . n 1 1 1 1 1 1 Đặt x n2 sin . Áp dụng bổ đề 1: sin k x k . n n k k k 6k 3 k 6k 1 1 1 1 2 n an 1 2 n 1 . 6 2 n 1 1 1 1 a 1 Chia các vế cho n2 : n 2 n . 2 n2 2 6n2 an 1 Cho n , và lấy giới hạn, suy ra lim 2 . n 2 . 2 n 1 un Bài 21. Cho dãy số u1 2,un 1 n 1. Tính giới hạn lim . n un 1 n Hướng dẫn giải. n2 Ta chứng minh quy nạp u n 1 , n 1. n 1 n Rõ ràng khẳng định đã đúng với u1 . 2 k 2 k 1 Giả sử đã có u k 1, k 1. Ta chứng minh u k 2 . k 1 k k 2 k 1 2 (k 1)2 k 1 Thật vậy: uk k 1 uk 1 . uk 1 k 2 2 k 2 (k 1)2 k 1 1 u u k 2 k 2 k k 1 k 1 u 1 k 2 k 2 k 1 k 1 k 1 2 n un Vậy ta có un n 1, n 1 lim 1. n 1 n n
  14. x1 Bài 22. Cho 2 và dãy số x với: . n 2 n 3 * 2x n 1 3x n n N n * a) Chứng minh: x n 1 với n N . b) Chứng minh dãy số x n có giới hạn và tìm giới hạn đó. Hướng dẫn giải. * Ta chứng minh x n 1 với n N bằng quy nạp. Ta có: x1 nên x1 1. * Giả sử: x k 1 với k N . n 1 n 3 Ta có: 3x 2 3 và 1 nên 3x 2 2 . Suyra: x 1. k n n n n 1 * Vậy x n 1 với n N . Ta chứng minh xn là dãy giảm bằng quy nạp. 2 Vì 2 nên 3 4 2 .Ta có x 2 x1 . n 1 Giả sử: x x . Ta có: 3 x 2 3x 2 và f n = là hàm nghịch biến nên:. k 1 k k 1 k n k 4 k 3 3x 2 3x 2 . k 1 k 1 k k Suy ra: x k 2 x k 1 . Vậy xn là dãy giảm. xn lả dãy giảm và bị chặn dưới bởi 1 nên hội tụ. x1 1 2 * * Đặt lim x n .Ta có 2 3 1 1. xn 3x 4 (n N ) un un x2n 1 n N x n n 1 xn 1 Vậy lim x n 1. Bài 23. Cho dãy số thực với . * Xét các dãy số thực với và vn với vn x2n n N . a) Chứng minh các dãy số un , vn có giới hạn hữu hạn khi n . b) Chứng minh các dãy số xn có giới hạn hữu hạn khi n và tìm giới hạn đó. Hướng dẫn giải. 3x 4 a) Xét hàm số f x trên 0; . x 1 Ta có: f x nghịch biến trên 0; ; liên tục trên 0; và nhận giá trị trong 0; .
  15. x1 1 Dãy số đã cho được viết lại .Ta chứng minh un , vn bị chặn bằng quy nạp. xn 1 f xn Ta có u1 x1 suy ra 0 u1 4. Giả sử: 0 uk 4 . Vì f x nghịch biến trên 0; nên f 4 f xk f 0 .Suy ra: 0 xk 1 4 . Tương tự cho dãy un .Ta chứng minh un là dãy tăng; vn là dãy giảm bằng quy nạp. Ta có x1 x3 .Vì hàm số f x nghịch biến trên 0; nên f x1 f x3 hay x2 x4 . * Giả sử x2k 1 x2k 1 ta có f x2k 1 f x2k 1 hay x2k x2k 2 ( với k N ). Với x2k x2k 2 Ta có: f x2k f x2k 2 hay x2k 1 x2k 3 . Với x2k 1 x2k 3 ta có: f x2k 1 f x2k 3 hay x2k 2 x2k 4 . Vậy theo quy nạp ta có thì x2n 1 là dãy tăng, x2n là dãy giảm. Hay ta có un là dãy tăng; vn là dãy giảm. un , vn là các dãy đơn điệu và bị chặn nên lim x2n v;lim x2n 1 u . b) Ta có: x2n f x2n 1 và x2n 1 f x2n 2 nên qua giới hạn ta có:. 3v 4 u u f v v 1 . Từ hệ trên ta có u v . v f u 3u 4 v u 1 Dãy số xn có hai dãy con x2n , x2n 1 có cùng giới hạn là u v nên lim xn u . 3u 4 Qua giới hạn và từ phương trình u ta có u 1 5 . u 1 u1 2011 Bài 24. Cho dãy số un được xác định: . 2n u 2n u 1 , n N * n 1 n Chứng minh rằng dãy số un có giới hạn hữu hạn và tính giới hạn đó. Hướng dẫn giải. 1 Ta có 2n u 2n.u 1 u u . n 1 n n 1 n 2n 1–n Chứng minh : un 2 (bằng quy nạp). 0 *với n 1 ta có u1 2011 2 . 1–k *Giả sử uk 2 (với k 1 ).
  16. –k *Cần chứng minh : uk 1 2 . k 1 k k k Ta có uk 1 uk 2 2 2 2 . Suy ra điều phải chứng minh. 1 Từ đó ta có u – 2–n 0 với mọi n u u . n n 1 n 2n 1 1 1 1 Ta có u u ; u u ; u u ; ;u u . 2 1 2 3 2 22 4 3 23 n n 1 2n 1 1 1 1 1 un u1 . 2 22 23 2n 1 n 1 1 1 n 1 1 2 1 Công thức tổng quát : un 2011 . 2011 1 . 2 1 2 2 Vậy lim un 2010. u a 1 Bài 25. Cho số thực a 0;1 , xét dãy số un với: 1 2013 . u u2 u ,n  n 1 2014 n 2014 n a) Chứng minh rằng: 0 un 1,n  . b) Chứng minh rằng un có giới hạn hữu hạn. Tìm giới hạn đó. Hướng dẫn giải. a) Chứng minh: 0 un 1,n  1 . n 1:u1 a 0;1 1 đúng với n=1. 1 1 Giả sử 0 u 1với k 1,k  . Ta có: 0 u2 1 0 u2 . k k 2014 k 2014 2013 2013 0 u 1 0 u . k 2014 k 2014 1 2013 0 u2 u 1 0 u 1. 2014 k 2014 k k 1 Vậy: 0 un 1,n  . b) Chứng minh rằng un có giới hạn hữu hạn. Tìm giới hạn đó. Ta chứng minh: un là dãy tăng. 1 2013 1 n  ,u u u2 u u u u u u 2013 0 . n 1 n 2014 n 2014 n n 2014 n n n n un 1 un ,n  hay un là dãy tăng.(2).
  17. Từ (1),(2) suy ra un có giới hạn hữu hạn.Giả sử un có giới hạn là a, o a 1 . 1 2013 Ta có: a a2 a a 1. Vậy limu 1. 2014 2014 n 3 u 1 2 Bài 26. Cho dãy số(un) xác định như sau: . 1 2 u u3 , n N n 1 3 n 3 a) Chứng minh rằng: 1 un 2,n  . b) Chứng minh rằng un có giới hạn hữu hạn. Tìm giới hạn đó. Hướng dẫn giải. 3 a) Với: n 1:u 1 đúng với n=1. 1 2 Giả sử: 1 uk 2 với k 1,k  . 1 3 8 1 2 Ta có: uk 1 2 uk uk 2 uk 2uk 4 0 uk 1 2 . 3 3 3 1 3 uk 1 1 uk 1 0 uk 1 1. 3 1 uk 1 2 . Vậy: 1 un 2,n  . 1 2 b) n  ,u u u 1 u 2 0 u u ,n  hay u là dãy giảm (2). n 1 n 3 n n n 1 n n Từ (1),(2) suy ra un có giới hạn hữu hạn. Gọi a là giới hạn của un , 1 a 2 . 1 2 Ta có a a3 a 1. Vậy limu 1. 3 3 n u2 Bài 27. Cho dãy số u xác định bởi: u 1;u n u ,n N * . n 1 n 1 2015 n u u u Tìm giới hạn sau: lim 1 2 n . n u2 u3 un 1 Hướng dẫn giải. 2 un un 1 1 Từ đề bài ta có: un 1 un . Suy ra: 2015 . 2015 un 1 un un 1 u u u 1 1 1 Ta có: 1 2 k 2015 2015 1 . u2 u3 uk 1 u1 uk 1 uk 1 Ta có un là dãy đơn điệu tăng và u1 1.
  18. 2 Nếu lim un thì 0 . n 2015 ( vô lí vì un là dãy đơn điệu tăng và u1 1). Suy ra: lim un . n u u u Kết luận: lim 1 2 n 2015 . n u2 u3 un 1 u1 2013 * Bài 28. Cho dãy số un xác định bởi 2 n N . un 2un .un 1 2013 0 Chứng minh rằng dãy (un) có giới hạn và tính giới hạn đó. Hướng dẫn giải. 2 Từ hệ thức truy hồi suy ra 2un .un 1 un 2013. Bằng quy nạp chứng minh được un > 0, với mọi n. Do đó ta có:. 2 un 1 2013 1 2013 2013 un un 1 un . 2013,n 1. 2un 1 2 un 1 un Mặt khác ta có :. 2 un 1 un 2013 1 2013 1 1 2 2 1. un 2un 2 2un 2 2 (un) là dãy số giảm và bị chặn dưới bởi 2013 , do đó (un) có giới hạn hữu hạn. Đặt limun a . a2 2013 Ta có : a a 2013 . Vậy limu 2013 . 2a n 4 xn 9 * Bài 29. Cho dãy số xn xác định bởi: x1 4, xn 1 3 ,n ¥ . xn xn 6 a) Chứng minh rằng lim xn ;. n n 1 b) Với mỗi số nguyên dương n , đặt y . Tính lim y . n  3 n k 1 xk 3 Hướng dẫn giải. 4 3 x 9 xn 3 xn 3 a) Xét x 3 n * . n 1 3 3 xn xn 6 xn 3 xn 3 Bằng quy nạp chứng minh được xn 3,n 1.
  19. 4 2 xn 9 xn 6xn 9 Xét xn 1 xn 3 xn 3 . xn xn 6 xn xn 6 2 xn 3 * xn 1 xn 3 0, n ¥ . xn xn 6 Do đó xn là dãy tăng và 4 x1 x2 x3 Giả sử xn bị chặn trên lim xn a . a4 9 Do đó: a a 3 4 (vô lý). Suy ra x không bị chặn trên. Vậy lim x . a3 a 6 n n 1 1 1 1 1 1 b) Từ (*), suy ra: 3 3 . xn 1 3 xn 3 xn 3 xn 3 xn 3 xn 1 3 n 1 n 1 1 1 Suy ra: y 1 . n  3  k 1 xk 3 k 1 xk 3 xk 1 3 xn 1 3 1 Vậy lim yn lim 1 1. xn 1 3 x 1 1 Bài 30. Cho dãy số 2015 . xn xn 1 xn 2015 2014 2014 2014 x1 x2 xn Tìm giới hạn của dãy số un với un . x2 x3 xn 1 Hướng dẫn giải. 2015 2015 2015 xn xn xn 1 xn xn xn 1 xn xn 1 xn 2015 2015 xn 1xn 2015xn 1xn . 1 1 x2014 1 1 x2014 n 2015 n xn xn 1 2015xn 1 xn xn 1 xn 1 . 1 Từ đó un 2015 1 . xn 1 Dễ thấy xn là dãy tăng và 1 x1 x2 x3 . Giả sử xn bị chặn trên lim xn a . a2015 Do đó: a a a 0 1 (vô lý). Suy ra x không bị chặn trên. Vậy lim x . 2015 n n
  20. 1 Vậy limun lim 2015 1 2015 . xn 1 x 1 1 Bài 31. Cho dãy số{x } xác định bởi 2 . n xn xn 1 xn 2015 x1 x2 xn Tìm giới hạn của dãy (Sn ) với Sn . x2 x3 xn 1 Hướng dẫn giải. 2 2 xn 2 xn 1 xn xn xn 1 1 xn 1 xn 2015 xn 1 xn xn 2015 2015 2015 xn 1xn xn 1xn xn 1 xn xn 1 x1 x2 xn 1 1 1 Suy ra: Sn 2015 2015 1 . x2 x3 xn 1 x1 xn 1 xn 1 Dễ thấy xn là dãy tăng và 1 x1 x2 x3 . Giả sử xn bị chặn trên lim xn a . a2 Do đó: a a a 0 1 (vô lý). Suy ra x không bị chặn trên. Vậy lim x . 2015 n n 1 Vậy limSn lim 2015 1 2015 . xn 1 x1 1 Bài 32. Cho dãy số (xn ) xác định bởi . xn 1 xn (xn 1)(xn 2)(xn 3) 1 n 1 Đặt Sn  . Tìm limSn . k 1 xk 2 Hướng dẫn giải. x x (x 1)(x 2)(x 3) 1 (x 2 3x )(x 2 3x 2) 1 x2 3x 1 n 1 n n n n n n n n n n . 1 1 1 n 1 1 1 1 1 Ta có Sn  . xn 2 xn 1 xn 1 1 k 1 xk 2 x1 1 xn 1 1 2 xn 1 1 2 * Dễ thấy: xn 1 xn xn 1 0,n N suy ra xn là dãy tăng và 1 x1 x2 x3 . Giả sử xn bị chặn trên lim xn a . 2 Do đó: a a 3a 1 a 1 1 (vô lý). Suy ra xn không bị chặn trên. Vậy lim xn . 1 1 1 Vậy limSn lim . 2 xn 1 1 2
  21. 2016 u1 Bài 33. Cho dãy số (un) xác định bởi: 2015 . 2 2un 1 un 2un , n ¥ * 1 1 1 Đặt Sn . . . . Tính: limSn. u1 2 u2 2 un 2 Hướng dẫn giải. u u 2 1 1 1 1 1 1 2u u u 2 u n n n 1 n n n 1 2 u u u 2 u 2 u u n 1 n n n n n 1 . n 1 1 1 2015 1 Sn  . k 1 uk 2 u1 un 1 2016 un 1 * Bằng quy nạp ta dễ dàng chứng minh được un 0,n N . 1 2016 Khi đó: u u u 2 0,n N * suy ra u là dãy tăng và u u u . n 1 n 2 n n 2015 1 2 3 Giả sử un bị chặn trên limun a . 2016 Do đó: 2a a2 2a a 0 (vô lý). Suy ra u không bị chặn trên. 2015 n Vậy limun . 2015 1 2015 Vậy limSn lim . 2016 un 1 2016 4. GIỚI HẠN CỦA HÀM SỐ.