Đề cương ôn tập học kỳ 2 môn Toán 7
Bạn đang xem tài liệu "Đề cương ôn tập học kỳ 2 môn Toán 7", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_cuong_on_tap_hoc_ky_2_mon_toan_7.pdf
Nội dung text: Đề cương ôn tập học kỳ 2 môn Toán 7
- ĐỀ CƯƠNG ÔN TẬP HỌC KỲ 2 MÔN: TOÁN 7 A. CÁC DẠNG TOÁN: I. THỐNG KÊ: 1. Xác định dấu hiệu. Lập bảng tần số. 2. Tính số trung bình cộng theo công thức. 3. Tìm Mốt của dấu hiệu (M0). 4. Dựng biểu đồ đoạn thẳng. 5. Nhận xét dấu hiệu (giá trị cao nhất, thấp nhất; giá trị có tần số cao nhất, thấp nhất; khoảng giá trị chủ yếu). II. ĐA THỨC: 1. Thu gọn biểu thức: a) Nhân hai đơn thức (áp dụng các công thức xm.xn = xm + n; (xm)n = xm . n). b) Cộng, trừ các đơn thức đồng dạng (Chú ý “Quy tắc bỏ dấu ngoặc”). c) Thu gọn đa thức, cộng – trừ đa thức các đa thức. 2. Tính giá trị của biểu thức đại số. 3. Tìm bậc của đơn thức, đa thức. 4. Chứng tỏ a có là nghiệm (hay không là nghiệm) của đa thức (Px). 5. Tìm nghiệm của đa thức P(x). 6. Chứng tỏ đa thức P(x) vô nghiệm. III. HÌNH HỌC: Xem kỹ lại các kiến thức mới học sau để giải các bài tập: 1. Tổng ba góc của tam giác, góc ngoài của tam giác. 2. Các trường hợp bằng nhau của tam giác và tam giác vuông. 3. Tam giác vuông, tam giác cân, tam giác vuông cân, tam giác đều. 4. Định lý Pythagòre. 5. Quan hệ giữa góc và cạnh đối diện trong tam giác. 6. Quan hệ giữa đường vuông góc và đường xiên, giữa đường xiên và hình chiếu. 7. Bất đẳng thức tam giác. 8. Các đường đồng quy trong tam giác. B. MỘT SỐ ĐỀ, BÀI TẬP GỢI Ý: ĐỀ 1 Câu 1: Thu gọn các đơn thức sau rồi tìm hệ số và bậc của chúng. 1 a) xy2(2x2yz) b) (2xy)2(– x2yz)3 5 Câu 2: Tìm bậc của đa thức và tính giá trị của đa thức: 1 C = xy – x2y3 + 2xy – 2x + x2y3 + y + 1 tại x = 3 và y = – 2 2 Câu 3: Cho các đa thức: A(x) = x2 + 5x4 – 3x3 + x2 – 4x4 + 3x3 – x + 5 và B(x) = x – 5x3 – x2 – x4 + 5x3 – x2 + 3x – 1 a) Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến. b) Tính A(x) + B(x) và A(x) – B(x). Câu 4: Tìm nghiệm của các đa thức: a) 3x + 7 b) (5 – 4x)(5 + 10x)
- Câu 5: Cho tam giác ABC có AB < AC và AD là phân giác. Trên cạnh AC, lấy điểm E sao cho AB = AE. a) Chứng minh BD = DE. b) So sánh BD và CD. c) Từ B kẻ đường thẳng song song với AD cắt đường thẳng AC tại F. Chứng minh tam giác ABF cân. d) Chứng minh tam giác BEF vuông. ĐỀ 2 Câu 1: Thu gọn các đơn thức sau rồi tìm hệ số và bậc của chúng. 1 1 a) x3y(– 2xy) b) xy3(2xy2)2(– yz) 2 4 Câu 2: Tìm bậc của đa thức và tính giá trị của đa thức: A(x) = 2x2 – 5x – 7 tại x = – 1; x = 0,5. Câu 3: Cho các đa thức: P(x) = 4x5 – x3 + 4x2 + 5x + 9 – 4x5 – 6x2 – 2 và Q(x) = – 3x – 4x + 10x2 – 8x + 5x – 7 + 8x a) Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến. b) Tính A(x) + B(x) và A(x) – B(x). c) Xác định xem x = – 1 có phải là nghiệm của đa thức H(x) = A(x) + B(x) không? Câu 4: Tìm nghiệm của các đa thức: a) 3x – 2 b) x2 – 25 Câu 5: Cho tam giác ABC cân tại A và hai trung tuyến BM, CN cắt nhau tại I. a) Chứng minh BNC = CMB. b) Chứng minh BIC cân tại I. c) Chứng minh BC < 4.IM. ĐỀ 3 Câu 1: Điểm kiểm ta toán lớp 7 được ghi lại như sau: 10 5 8 8 5 7 8 9 4 5 5 7 8 7 9 8 10 7 4 8 9 8 9 6 6 9 10 5 5 4 a) Dấu hiệu ở đây là gì? Số các giá trị là bao nhiêu? b) lập bảng tần số và rút ra nhận xét. c) Tính số trung bình cộng và tìm mốt của dấu hiệu Câu 2: Tìm đa thức M biết: a) M + (– 5x2 + 2xy) = – 4x2 + 6xy – y2 b) M – (3x2 – 2xy + 1) = 2x2 + 3xy – 2 Câu 3: Cho đa thức P(x) = x4 – 2012x3 + 2012x2 – 2012x + 2012. Tính P(2011). Câu 4: Chứng tỏ các đa thức sau vô nghiệm: a) x2 + 3 b) – 3x4 – 5 Câu 5: Cho tam giác ABC vuông tại A có AB = 12cm, BC = 20cm. a) Tính AC và so sánh các góc của tam giác ABC. b) Vẽ AH BC tại H. trên tia đối của tia HA lấy điểm D sao cho H là trung điểm của AD. Chứng minh tam giác BAD cân. c) Chứng minh tam giác BDC vuông. d) Gọi M là trung điểm của AB và K là hình chiếu của H trên DC. Chứng minh ba điểm M, H, K thảng hàng.
- C. MỘT SỐ ĐỀ THAM KHẢO: (Một số đề kiểm tra học kỳ II các năm học gần đây của thành phố Bà Rịa) NĂM HỌC 2010 – 2011 Bài 1. (2 điểm) a) Tính tích của hai đơn thức sau rồi tìm bậc của đơn thức thu được: 1 – x2y và 6xy3 2 b) Tính giá trị của biểu thức sau: 3x2 – 3xy2 + y3 tại x = 3 và y = – 1. Bài 2. (2,5 điểm) Cho hai đa thức: P(x) = 7x3 + x2 – 5x – 3x3 + 2 và Q(x) = x4 + 2x3 – 1 + 3x – x4 – 4x2 a) Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến. b) Tính P(x) + Q(x) và P(x) – Q(x). Bài 3. (2 điểm) Tìm nghiệm của các đa thức sau: a) 2x + 6 b) (x – 5)(2x + 1) Bài 4. (3,5 điểm) Cho tam giác ABC vuông ở A, đường cao AH. Trên BC lấy điểm D sao cho BD = AB. Đường vuông góc với BC tại D cắt AC tại E. Chứng minh rằng: a) BAE = BDE b) BE là đường trung trực của AD. c) AD là tia phân giác của góc HAC. NĂM HỌC 2011 – 2012 Câu 1. (2,0 điểm) a) Thu gọn biểu thức sau và cho biết tìm bậc của đơn thức tìm được: 2x2.(–3x2y) b) Tính giá trị của biểu thức đại số f(x) = 5x2 – 2x + 52 tại x = 20. Câu 2. (2,0 điểm) Cho hai đa thức: P(x) = x4 + 2x3 – 2x2 – 6x + 5 và Q(x) = 2x3 – 4x2 + 3x – 1 a) Tính P(x) + Q(x). b) Tính P(x) – Q(x). Câu 3. (2,0 điểm) Tìm nghiệm của các đa thức sau: a) 5x + 6 b) (x – 4)(3x + 1) Câu 4. (0,5 điểm) Rút gọn biểu thức A = 20.5n – 5n + 2 + 5n + 1 Câu 5. (3,5 điểm) Cho tam giác ABC vuông ở A, đường phân giác BE. Kẻ EH vuông góc với BC (H BC). Gọi K là giao điểm của AB và HE. Chứng minh: a) ABE = HBE b) BE là đường trung trực của AH. c) EK = EC. NĂM HỌC 2012 – 2013 Bài 1. (2,0 điểm) a) Thu gọn rồi xác định hệ số và phần biến của đơn thức sau: (–3)2x2y3xy5 b) Tính giá trị của biểu thức f(x) = 3x2 – 2x – 5; tại x = – 1. Bài 2. (2,0 điểm) Cho hai đa thức: P(x) = 9 – x3 + 4x – 2x3 + 4x2 – 6 và Q(x) = – 3x3 + 4x2 – 2x + 4 a) Thu gọn và sắp xếp đa thức P(x) theo lũy thừa giảm dần của biến. b) Tính P(x) + Q(x) và P(x) – Q(x).
- Bài 3. (2,0 điểm) Tìm nghiệm của đa thức: a) 2x – 5 b) (x – 1)(x + 5) Bài 4. (0,5 điểm) Chứng minh rằng đa thức x2012 + x2 + 1 không có nghiệm. Bài 5. (3,5 điểm) Cho ABC có A = 600, AB 2MN. Năm hoc̣ 2014 – 2015 (ngày 09/05/2015) Bài 1: (2,0 điểm) 3 4 2 22 a) Thu gọn đơn thức sau rồi cho biết bậc và hệ số của đơn thức xy . xy 4 9 1 2 b) Tính giá trị của biểu thức: P = x2y + xy – xy2 + 1 tại x = 2; y = – 1. 2 3 Bài 2: (2,5 điểm) Cho hai đa thức: P(x) = 1 + 3x5 – 4x2 – x3 + 3x; Q(x) = 2x5 + 10 – 2x3 – x4 + 4x2. a) Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến. b) Tính P(x) + Q(x); P(x) – Q(x). Bài 3: (2,0 điểm) 1) Tìm nghiệm của đa thức a) 3x + 1 b) (2x – 8)(5 + x) 2) Chứng tỏ rằng đa thức f(x) = x2 – 2x + 2015 không có nghiệm.
- Bài 4: (3,5 điểm) Cho ABC cân tại A ( A DK. c) Trên tia DK, lấy điểm N sao cho DN = DB. Lấy M là trung điểm của AD. Chứng minh ba điểm B, M, N thẳng hàng. 1 1 1 1 1 Bài 6 (0,5 điểm): Cho f(x) = x2 + x. Tính M = + + + + + f (1) f (2) f (3) f (2014) f (2015)